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Phase transition analogous to Bose-Einstein condensation in systems
of noninteracting surfactant aggregates
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Ideal bosons and a classical system of monomers that aggregate forming noninteracting ring polymers are
known to have the same partition function. So, the ring polymers have a phase transition, the analogue of
Bose-Einstein condensation of bosons. At this phase transition macroscopic polymers are formed. The link
between these systems is made via Feynman’s path integrals: these integrals are the same for the trajectories of
the bosons in imaginary time and for the configurations of the polymers. We show that a transition of this
general form occurs within a whole class of aggregating systems. Examples are the lamellae formation in
suspensions of disclike micelles or the emulsification failure observed in water-oil-surfactant emulsions. As
with bosons, the transition occurs even when aggregates do not interact. Thel-transition in4He is believed to
be Bose-Einstein condensation modified by interatomic interactions. We suggest that interaggregate interac-
tions too only modify the transition we have found.
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I. INTRODUCTION

Bose-Einstein condensation~BEC! is a textbook@1,2#, but
rather unusual, phase transition. It occurs for noninterac
bosons, in contrast to more conventional transitions suc
that of the Ising model, which are driven by interaction
Feynman@3# showed that the statistical mechanics of boso
can be performed via what he called path integrals. Th
integrals are, in turn, equivalent to integrals over the confi
rations of ring polymers. Thus, the path integral formalism
Feynman implies that noninteracting bosons and s
assembling, noninteracting ring polymers have partit
functions of exactly the same form. Necessarily then, r
polymers must undergo a phase transition precisely an
gous to BEC@4#. Here, we generalize this result to show th
there is a class of self-assembling systems that under
phase transition analogous to BEC. This phase transition
curs in the absence of interactions between the aggreg
formed by self-assembly. At BEC a condensate appears
is a macroscopic number of bosons in a single state. In
analogous transition in self-assembling systems, an ag
gate of macroscopic size appears. This may be, for exam
an infinite bilayer of surfactant or a bulk phase. The agg
gates that coexist with the macroscopic aggregate have
a constant number density and a size distribution which
cays more slowly than exponentially with their size. For e
ample, within our simple model for a microemulsion, at c
existence with a bulk oil phase, the number density
droplets of sizes decays as exp(2s2/3).

Self-assembling systems are systems in which the
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ticles are not immutable objects but are formed reversi
@5,6#. Typically, we have a solution of surfactant with poss
bly a cosurfactant or oil. The surfactant molecules then sp
taneously assemble into micelles, or coat and stabilize d
lets of oil. Both the micelles and the droplets are what
term aggregates. For example, in a microemulsion, equ
rium is obtained when the oil is dispersed as a polydispe
distribution of oil droplets whose surfaces are coated w
surfactant. These droplets are more stable than just a si
bulk oil phase because with a single bulk phase there is
extensive oil-water interface, and the amphiphilic surfact
molecules have the lowest energy at this interface. The
tribution of droplets changes with density and temperatu
as varying either one changes the balance of the equilibr
between droplets of different sizes. A BEC-like transitio
occurs when the balance is shifted such that at equilibriu
some of the oil exists as an infinite droplet, a bulk pha
This transition is called emulsification failure@7#.

Our predictions are for very simple models of what a
quite complex experimental systems: they contain water,
or more surfactants~which are rather complex molecules!,
oil, possibly even a cosurfactant as well. However, if t
aggregates formed have free energies thatscale in certain
ways ~see Sec. III! then our prediction of a phase transitio
will be correct. In Sec. IV, we study three examples: discli
micelles, microemulsions, and wormlike micelles. It shou
be borne in mind that wormlike micelles only undergo
BEC-like phase transition in the limit that their end cap e
ergy is infinite. Of course in experiment the energy will n
be infinite and so the transition will be rounded off by th
presence of chains. The other two systems do have p
transitions.

In this contribution we consider models of surfactant s
lutions, which have a BEC-like transition. Remarkably, a b
wildering range of physical systems also have partition fu
©2002 The American Physical Society06-1
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tions that are closely related to that of ideal bosons or r
polymers. The ordered phase of systems which are in
universality class of theXY model @8# in three dimensions
supports defect loops. This universality class is a class
systems that, when they order, break a U~1! symmetry@8#;
examples are superfluid4He @9,10#, and a phase transition i
the early universe@9–11#. The defect loops~called vortex
loops in 4He) are defects in the ordering that are rings in
sense that the defect is one dimensional and it is closed—
ends. If interactions between these defect loops are
glected, we have simply our system of noninteracting r
polymers. Within this picture the transition from the order
phase to the disordered phase occurs when an infinite d
loop ~in BEC language a condensate! forms. Defect loops
have also been studied in a nematic phase@12#, and their
behavior is similar even though the symmetry of the nem
phase is different to that of an orderedXY model. So, theXY
model in three dimensions and the nematic phase both h
defects that can be described~within an approximation! as
ideal ring polymers and therefore within this approximatio
have a partition function of the same form as ideal boson
three dimensions.

Percolation can be regarded as an aggregation phen
enon in which clusters of links or nodes~called ‘‘animals’’!
are formed. When looked at from this point of view, th
percolation transition is of the BEC type@13#, with the per-
colating cluster playing the role of the condensate~as a mat-
ter of fact, the percolation transition on the Bethe lattice
the same as that of ideal bosons in three dimensions@14#!.

A surprising connection appears in some kinds of rand
networks@15,16#. These are systems out of equilibrium, b
the analogy with BEC appears when studying the asympt
distribution of links among nodes as time goes to infin
~long time plays the role of the thermodynamic limit in the
systems!. Under certain conditions one node takes a fin
fraction of all the links, thus forming the analog to the co
densate@15#.

A final example is of models of the statistics of so-call
baby universes@17,18#, which arise in the study of quantum
gravity.

As well as their use in modeling a diverse range of p
nomena, free energies of the type we study in Sec. III
some of the simplest free energies to exhibit a phase tra
tion. As such they have been employed as simple mode
the study of the dynamics of phase transitions@19,20#. They
are what Godre`che and Luck@20# call the monkey class o
urn models, as it corresponds to the image of a mon
playing at exchanging balls between boxes.

This paper is organized as follows. We start, in the f
lowing section Sec. II, by studying BEC and ring polyme
First in Sec. II A, we present the basics of BEC in order
establish both the nature of the transition and some of
functions and notation that we will require later on. Then
Secs. II B and II C, we describe Feynman’s path integral
proach and show that the partition function is identical
form to that of a model of ring polymers. In Sec. III, we wi
consider the free energy function for noninteracting agg
gates. It has two parts: an internal free energy of an ag
gate as a function of its size and a translational entropy t
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that favors the formation of many aggregates to maxim
this translational entropy; see Refs.@5,21–24# for examples
of the use of free energies of this type. We will define wha
required of the internal part of the free energy in order
observe a BEC-like phase transition, and show, in Sec. IV
few examples of aggregating systems exhibiting this kind
transition. The last section is a conclusion.

Our results for our general model~Sec. III! and for mi-
croemulsions~Sec. IV B! have been published previously i
a shorter form@25#.

II. BOSE-EINSTEIN CONDENSATION

A. The standard approach

Let us summarize briefly the way BEC is derived in tex
books, for example@1,2#. This will enable us to establish
both the required notation and to describe the essential
the transition that lies at the heart of this paper, in order
stress the main points involved. Let us suppose we hav
system of ideal~spinless! bosons distributed among an infi
nite, discrete set of energy levels. The grand canonical
semble partition functionJ, of bosons at a chemical poten
tial m, and a temperatureT, is

ln J52(
e

ln~12ze2be!, ~1!

where z5ebm is the activity, with b51/kT (k is Boltz-
mann’s constant!. From Eq.~1! it follows that 0,z,ebe0,
wheree0 is the ground-state energy, and that lnJ diverges as
z approaches the upper bound.

Our system is now assumed to be ad-dimensional cubic
box of ~hyper!volumeV5Ld, with no external potential. By
introducing periodic boundary conditions, the set of possi
energy levels is given by

be5p
L2

L2
unu2, nPZd, ~2!

with L5h/A2pmkT the thermal wavelength, and so th
ground-state energye050. WhenL@L we can transform
the sum~1! into an integral and this yields

ln J52
1

G~d/2!

V

LdE0

`

dxxd/221 ln~12ze2x!. ~3!

Expanding in powers ofz it follows

ln J5
V

Ld
Gd/211~z!, Gm~z![ (

n51

`
zn

nm
. ~4!

The average density is then given by

n5
1

Ld
Gd/2~z!. ~5!

If d.2, then both Eqs.~4! and ~5! are convergent forz
51 (5ebe0), while the original expression for lnJ, Eq. ~1!
6-2
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PHASE TRANSITION ANALOGOUS TO BOSE-EINSTEIN . . . PHYSICAL REVIEW E65 031406
diverged at this point. The reason for this is that the count
of levels for a given energy yielding thexd/221 factor in the
integral ~3!, gives zero weight to the ground state, which
the cause of the divergence. We can get rid of this prob
by separating out its contribution to lnJ, i.e., by adding
2 ln(12z) to the expression for lnJ, Eq. ~4!. Correspond-
ingly, this adds the contributionV21z/(12z) to the expres-
sion forn, Eq. ~5!, and we can realize that, givenV large but
finite, by choosingz sufficiently close to 1, the new contri
bution to n can be made arbitrarily large. The number
bosons in the ground state is then macroscopic, forming
so-calledcondensate. In the V→` limit there is a phase
transition, BEC. Ifn,nc5L2dGd/2(1), then lnJ is given
by Eq. ~4! with the solution forz of Eq. ~5! ~the density in
the ground state is 0!, whereas ifn.nc , then lnJ is a con-
stant, lnJ5VL2dGd/211(1), and n2nc is the density of
bosons in the ground state.

We stress three points: first, the transition occurs when
increasingz, the density of bosons in excited states Eq.~5!
saturates; second, that at the transition a condensate ap
that is a macroscopic population of bosons in a single st
and third, that in order to calculate the behavior at and
yond the transition, we needed to consider explicitly fin
system sizes.

B. Feynman’s path integral approach

Feynman introduced an alternative approach to this pr
lem @3# using the density matrix in the space representat
This involves mapping bosons onto ring polymers, and p
vides the link between low-temperature bosons and the c
sical systems we are interested in. We therefore sketch
derivation; for more details see Ref.@3#. For a set ofN par-
ticles, the partition function is given by

ZN5tr r̂, r̂[e2bHN, ~6!

with HN the Hamiltonian operator. For noninteracting disti
guishable particlesr̂D($xi%;$xi8%)5 r̂1(x1 ;x18)••• r̂1(xN ;xN8 )
($xi% denotes the set of coordinates$x1 , . . . ,xN%). In the V

→` limit r̂1 is a Gaussian

r̂1~x;x8!5
1

Ld
expH 2

p

L2
~x2x8!2J . ~7!

Quantum particles are indistinguishable, so in the cas
bosons, the trace in Eq.~6! has to be takenonly over sym-
metric states. A symmetric density matrixr̂ can be obtained
from that of distinguishable particlesr̂D as

r̂~$xi%;$xi8%!5
1

N! (
PPPN

r̂D~$xi%;$Pxi8%!, ~8!

PN being the set of permutations ofN elements, and$Pxi%
denoting the result of performing the permutationP on the
set$x1 , . . . ,xN%.

Thus, the partition function for a system ofN noninteract-
ing bosons takes the form
03140
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ZN5E
VN

dNxr̂~$xi%;$xi%!

5
1

N! (
PPPN

E
VN

dNx)
i 51

N

r̂1~xi ;Pxi !. ~9!

Permutations can be split into cycles@26#; therefore, the in-
tegral above factorizes into terms of the form

hn5E
Vn

dnxr̂1~x1 ;x2!r̂1~x2 ;x3!••• r̂1~xn ;x1!. ~10!

If there areCn cycles of lengthn in a given permutation

E
VN

dNx)
i 51

N

r̂1~xi ;Pxi !5 )
n>1

hn
Cn .

There areN!/( )n>1Cn!nCn) permutations inPN that split
into Cn cycles of lengthn @3#, hence

ZN5 (
(nnCn5N

)
n>1

hn
Cn

Cn!nCn
. ~11!

As usual, we can get rid of the combinatoric constraints
using the grand partition function

J5 (
N50

`

zNZN5 )
n>1

(
Cn50

`
~hnzn/n!Cn

Cn!
, ~12!

from which we obtain

ln J5 (
n51

`
hnzn

n
. ~13!

There only remains the calculation ofhn . For that it is
helpful to rewrite Eq.~10! ashn5tr r̂1

n , which according to
the definition~6!, is nothing butZ1 computed at a tempera
ture given byb85nb ~equivalently,L825nL2). If we—as
Feynman @3#—use Eq. ~7! for r̂1, we obtain hn
5(V/Ld)n2d/2. Inserting this into Eq.~13!, we recover Eq.
~4!; again we have not taken the condensate into acco
The neglect lies in that Eq.~7! for r̂1 is obtainedafter taking
the thermodynamic limit. In order to overcome this de
ciency, we are going to determiner̂1 for a d-dimensional
cubic box of side lengthL with periodic boundary condi-
tions. In this box, the eigenfunctions of the Laplace opera
areV21/2exp$22pin•x/L%, with nPZd. Then

r̂1~x;x8!5
1

V)
i 51

d

q3Fe2pL2/L2
,
p

L
~xi2xi8!G , ~14!

whereq3(q,w) is one of Jacobi’s theta functions, defined
@27#

q3~q,w!5112(
k51

`

qk2
cos 2kw.
6-3
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Equation~14! coincides with Eq.~7! in theL→` limit. With
this expression forr̂1, we obtain

hn5@q3~bn,0!#d, b5e2pL2/L2
; ~15!

therefore,

ln J5 (
n51

`
zn

n
@q3~bn,0!#d. ~16!

The expansion ~16! distinguishes two regimes: th
‘‘large’’ n and the ‘‘small’’n terms. Supposen@L2/L2, then
bn!1 andq3(bn,0);1; these terms approach those of t
expansion of2 ln(12z). Suppose now thatn!L2/L2, then
bn;1. If we make use of the property~consequence of the
Poisson summation formula@28#!

q3~e2pl,0!5l21/2q3~e2p/l,0!,

then q3(bn,0);(L/L)n21/2. Hence these terms approac
those of Eq.~4!. If z is sufficiently smaller than 1, then th
former are negligible and lnJ is again given by Eq.~4!.
However, asz gets close enough to 1, the largen terms grow
so as to add a macroscopic contribution approximately gi
by 2 ln(12z). We thus reproduce BEC exactly as discuss
in the preceding section, all in the single formula~16!.

C. The classical isomorphism

The appearance of cyclic paths in the partition function
bosons, as a consequence of their being indistinguisha
establishes a connection between this system and a mod
ring polymers, usually referred to in the literature as t
‘‘classical isomorphism’’@29,30#. In the so-called Gaussia
model of polymers@2# the probability density for two neigh
boring monomers in ad-dimensional polymer chain to b
separated by a distancer is given by

P~r !5S 3

2pa2D d/2

expH 2
3r 2

2a2J , ~17!

wherea is a length scale usually known as the persiste
length. For a chain ofn11 monomers the probability tha
they are at positionsx0 , x1 , . . . ,xn , is

P~$xi%!5
1

Zn
expH 2

3

2a2 (
i 51

n

~xi 212xi !
2J , ~18!

the normalizing constantZn5V(2pa2/3)nd/2 being the par-
tition function of the chain. The factorV arises because th
first monomer can be placed anywhere in the volumeV.

From this expression we can obtain the partition funct
of a ring polymer~a chain whose ends are joined together! of
n monomers, as

Zn
ring5

1

n
Zn^d~x02xn!&, ~19!
03140
n
d

f
le,
l of
e

e

n

where the factor 1/n comes in because there aren ways in
which a ring can be split to form a chain, and the ang
brackets indicate an average overP($xi%). Now,

V^d~x02xn!&5S 3

2pa2D nd/2E
Vn

dx1•••dxn expH 2
3

2a2

3(
i 52

n

~xi 212xi !
22

3

2a2
~x12xn!2J , ~20!

an equation that reproduces Eq.~10! upon identifyingL2

[2pa2/3. Hence

Zn
ring5~Ld!n

V

Ld

1

nd/211
. ~21!

For a system ofN monomers that can self-assemble to fo
noninteracting ring polymers of arbitrary length, the cont
bution to the grand potential of rings of lengthn is znZn

ring .
The activity of a ring of lengthn is zn at equilibrium because
its chemical potential must ben times that of a monome
@22,21,5#. Therefore, the grand canonical partition functio
J, of self-assembling ring polymers, is just Eq.~13! with
hn /n replaced byZn

ring , i.e.,

ln J5 (
n51

`

znZn
ring5

V

Ld
Gd/211~zLd!, ~22!

and the density of monomers will be

nmon5 (
n51

`

nzn
Zn

ring

V
5

1

Ld
Gd/2~zLd!. ~23!

As nmon5(nnr(n), with r(n) the density of ring polymers
of lengthn, then

r~n!5zn
Zn

ring

V
. ~24!

Equations~22! and ~23! reproduce Eqs.~4! and ~5! with the
‘‘renormalized’’ fugacity z̃5zLd. This is the isomorphism.

Once again, we have derived an equation that is o
valid up to the transition. The corresponding equation for
density of monomers Eq.~23! saturates. But the mapping o
ring polymers onto bosons is exact so for noninteracting s
assembling ring polymers with periodic boundary conditio
on the monomer density, we obtain Eq.~14! for the probabil-
ity that the two ends are at positionsx andx8. Using this we
obtain Eq.~16!, but with z̃ replacingz, and theL appropriate
to ring polymers not bosons.

Due to this exact isomorphism between ideal bosons
self-assembling ring polymers, they have partition functio
with identical forms and therefore the two, at first sight ve
different systems, behave completely analogously. The
consequence of this is that the behavior of bosons can
interpreted in terms of a classical system of ring polym
~interactions can also be accounted for by introducing p
6-4
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integrals@3,30#!. This has been widely exploited in studies
bosons; see the review of Ceperley@30#. The second conse
quence is the complete analogy between the equilibrium
havior of self-assembling ring polymers and that of boso
Ring polymers undergo a ‘‘Bose-Einstein condensatio
transition. From the analysis of BEC carried out in Sec. II
we can conclude that the Bose condensate is equivale
the formation of macroscopically long ring polymers@4#. So,
if the concentration of monomers is larger than a criti
value@given by Eq.~5! with z51#, there appear macroscop
cally long rings. Note that a transition is enforced by the f
that the seriesGd/2(z) with d.2 takes only values in som
limited range (@0,2.612# for d53) for z<1 and is divergent
for z.1.

III. GENERAL MODEL

We have considered monomers that self-assemble
ring polymers. Let us generalize this and consider monom
that can self-assemble into aggregates, where these a
gates are noninteracting but are otherwise arbitrary. Thi
motivated by the following observation. What happens if
replace the free energy of a ring-polymer or boson den
matrix by some other free energy that has the property tha
Eq. ~23! for the monomer density,Gd/2(z) is replaced by a
different sumG(z)? If, asz runs over a range 0<z<zc , this
new sum takes only values in the limited range 0<G(z)
<G(zc) and is divergent forz.zc , then there must be a
phase transition, and this phase transition must occur du
the appearance of a macroscopic aggregate.

To be as general as possible we will denote the size
each aggregate by a~dimensionless! sizes, which we allow
to have any values0<s,`. If the number density of aggre
gates of sizes is denoted byr(s), then the free energy of ou
system will be given by the expression

bF/V5E
s0

`

dsr~s!@ ln r~s!211 f ~s!1as#, ~25!

wheref (s)1as is the internal free energy~in units ofkT) of
an aggregate of sizes. The rest of the contribution of aggre
gates of sizes to the free energy, lnr(s)21, is simply the
ideal mixing free energy. We use an integral not a sum in
~25!, partly for simplicity and partly as integrals are mo
commonly used to study self-assembling systems. If the s
cific model requires aggregates to be distinguished by
integer index~as in the preceding section!, all the integrals of
this section should be replaced by sums. As we will disc
later, the conclusions are unaffected by this distinction. R
polymers are a specific case of the general free energy,~25!.
The free energy of a gas of ring polymers where the den
of polymers of lengths is r(s) is given by Eq.~25! with
f (s)1as52 ln@Zs

ring/V#.
For generality, let us also allow the system to have i

posed constraints

j i5E
s0

`

dswi~s!r~s!, i 51, . . . ,n, ~26!
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where thej i play the role of ‘‘generalized densities.’’ An
example of a constraint would be a fixed total surface are
the aggregates. This would apply to a situation where
surface of the aggregates are coated with a layer of, sa
surfactant: for all the surfactant to lie at the surface of
aggregates the total area of the aggregates must equa
number of surfactant molecules times the surface area
single molecule.

Depending on the actual shape off (s) and the ‘‘weights’’
wi(s), this model may have very different phase behavio
The one we are interested in~related to BEC! requires that
all these functions behave aso(s) ass→` ~the reason will
be made clear below!.

The equilibrium distribution of aggregate sizes for th
model can be found as the minimum of Eq.~25! at constant
amount of ‘‘matter’’

f5E
s0

`

ds sr~s!, ~27!

under the constraints~26!, i.e.,

d

dr~s! FbF

V
1(

i 51

n

l ij i2mfG50;

this produces

ln r~s!1 f ~s!1(
i 51

n

l iwi~s!1~a2m!s50. ~28!

Herem is the chemical potential~in kT units! corresponding
to the reduced densityf, andl i are the Lagrange multipliers
corresponding to the constraints~26! ~and which are analo-
gous to chemical potentials associated to the ‘‘densities’’j i).
For notational simplicity, let us introducel5a2m. Then
Eq. ~28! gives an expression for the density distribution
aggregates

r~s!5expH 2 f ~s!2(
i 51

n

l iwi~s!2lsJ , ~29!

cf. Eq. ~24!, the equation for the density of ring polymer
derived from the isomorphism with bosons. Hence the eq
librium free energy~25! becomes

bF/V52r2(
i 51

n

l ij i1~a2l!f, ~30!

with r defined as

r5E
s0

`

dsr~s!. ~31!

To illustrate all this consider again the case of ring po
mers. For this model there are no constraints imposed, an
we have already mentioned,f (s)1as52 ln@Zring(s)/V#;
hence the equilibrium size distribution~29! is r(s)
5zsZring(s)/V, as in Eq. ~24!. Therefore, f
6-5
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5L2dGd/2(zLd), thus recovering the expression for the de
sity of monomers obtained before~23!.

Because of the behavior off (s) and wi(s) as s→` it
follows that the convergence of the integrals ofr(s) is domi-
nated by the chemical potential, i.e.,

r~s!;e2ls as s→`. ~32!

Therefore, as long asl.0, Eq. ~26! permit us to eliminate
the l i as functions of the constraintsj i and ofl. Equation
~27! then yieldsf as a function ofl, and given thatf is a
monotonically decreasing function ofl ~see Appendix A!, it
can be inverted to yieldl as a function off.

Obviouslyf→0 asl→`, andl.0 is required to guar-
antee convergence of the integrals in Eqs.~26! and ~27!.
Thus,l is restricted to the range (0,`). Two different pos-
sibilities arise in the limitl→01: eitherf remains finite or
f→`. We definefc as the limit value off, i.e.,

fc5E
s0

`

dssexpH 2 f ~s!2(
i 51

n

l iwi~s!J . ~33!

If fc5` then the equationf5f(l) can be inverted for any
finite value off, and there is a well-defined aggregate d
tribution ~29! and therefore a well-defined free energy~25!,
for all values off. However, if fc,` then we can invert
the equation only in the finite rangef<fc . Now, fc,` so
long as

lim
s→`

s2 expH 2 f ~s!2(
i 51

n

l iwi~s!J 50, ~34!

as then the integral forfc , Eq. ~33! converges.
The convergence of the integral forfc leads to a transi-

tion analogous to BEC. Note that the condition for conv
gence of the integral~34! is also the condition for a sum ove
the integrand of Eq.~33! to converge. So, the change fro
the sums in the preceding section to the integrals here d
not affect the phase behavior.

As mentioned in the Introduction there has been a g
deal of work on models that have free energies which can
written in the form of Eq.~25! @12,13,15–20#. However, in
all this work, the equivalent to the function we callf (s) has
always been a logarithmic function ofs, i.e., f (s)5t ln(s),
wheret is some constant. As we will see in Sec. IV, surfa
tant systems havef (s) functions that do not vary as ln(s),
and so our results will be a little different form those
previous work. Ideal bosons ind dimensions are describe
by a logarithmicf (s) with t5d/211. We can see this from
Eq. ~4! where the weight of states occupied byn bosons
varies asn2(d/211). This weight is essentially the exponenti
of minus ourf (s) function.

A. Finite-size analysis

Analogously to the case of bosons, we have to do a fin
size analysis in order to study the macroscopic aggregate
condensed phase. See Ref.@31# for a detailed finite-size
analysis of a system with anf (s) that varies logarithmically
03140
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with s. This analysis amounts to considering a free energy
an aggregate of sizes, ln r(s)211f(s;V), which depends on
V. Obviouslyf (s;V)→ f (s) asV→`, but the convergence is
not uniform. Intuitively, if s is ‘‘small’’ compared toV, then
f (s;V)' f (s), but if s is ‘‘large,’’ then f (s;V) strongly dif-
fers from f (s). Thus, there is a typical sizes1(V) such that it
is the largest for whichf (s,s1 ;V)' f (s). The convergence
of f (s;V) to f (s) when V→` occurs essentially becaus
s1(V)→` in this limit. We expect that in a finite volume
aggregates that span this volume will have their free ene
increased by their confinement in it.

Now, for a finite system, the equation

f5E
s0

`

dssexp$2 f ~s;V!2W~s!2ls% ~35!

must necessarily be solvable forl for any value off. ~For
notational simplicity we have introducedW(s)[( il iwi .)
This can only happen in two ways, given the assumptions
made for f (s): either ~a! the above integral diverges whe
l→01, or ~b! f (s;V) increases superlinearly withs, i.e.,
s21f (s;V)→` ass→`. In case~a! we have the same situ
ation as we met before for ring polymers@for which
f (s;V); ln(Vs) as s→`], and l is now constrained to re
main strictly positive. In case~b! the integral~35! converges
for any lPR becausef (s;V) dominates the larges decay.
Also, the value of the integral increases arbitrarily
l→2`. This case is met, for instance, in a system of co
pact aggregates, for which there is an upper bound to the
an aggregate can have in order to fit in the box@in this
examplef (s;V) would diverge whens approached the maxi
mum possible size an aggregate can reachSM#.

It is important to notice that, for any givenf and any
finite V, Eq. ~35! with the corresponding constraints@Eqs.
~26! with f (s;V) instead of f (s)# can only have a single
solution l(f;V). This is obvious because the integral is
monotonically decreasing function ofl. What we need to
determine now is the limit ofl(f;V) when V→`, which
we will denotel* (f). With this aim we can make use of th
nonuniform convergence off (s;V) to f (s) and split the in-
tegral ~35! as

f'E
s0

s1(V)

dssexp$2 f ~s!2W~s!2ls%

1E
s1(V)

`

dssexp$2 f ~s;V!2W~s!2ls%. ~36!

Let us also denotel(f), for anyf<fc , the solution forl
to Eqs.~26! and ~27! with r(s) given by Eq.~29!.

Assumef,fc and takeV sufficiently large@such that
l(f)s1(V)@1#. Then, forl'l(f), the first integral of Eq.
~36! is approximatelyf whereas the second one is appro
mately 0. This means thatl(f;V)→l(f) as V→`, so
l* (f)5l(f).

Assume nowf.fc . In this casel* (f) cannot be posi-
tive, because theV→` limits of the first and second inte
grals of Eq.~36! are,fc and 0, respectively, forl.0; so
the right-hand side of Eq.~36! would be,fc . Therefore,
6-6
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l* (f)<0. We have to discuss both cases,~a! and~b!, sepa-
rately. In case~a!, l* (f) cannot be negative either, becau
then the first integral of Eq.~36! ~and maybe the second on
as well! would diverge; hencel* (f)50. In case~b! the
monotonicity of the integral~35! forces l(f,V),0, if f
.fc ; as we have shown that the limitl* (f)>0, for these
two things to hold simultaneously the only possibility is th
l* (f)50.

We have thus proven that forV→`, if f,fc , l
(.0) is given by the solution of Eq.~27!, whereas iff
.fc , l50. There is then a phase transition atf5fc . In
order to understand what the nature of this transition is le
take a closer look at Eq.~36!. If f.fc thenl50; but for
l50, the first integral of this equation approachesfc ,
therefore, the limit of the second one whenV→` must be
f2fc . But this latter integral only contains contributions
macroscopic aggregates@with size s.s1(V)#, so above the
transition, the excess of mass~with respect tofc) goes into
macroscopic aggregates~as we have seen in the precedi
section for the particular case of ring polymers!.

In Appendix B, we have worked out in more detail th
finite-size analysis of the simple case in which there is a h
cutoff to the distribution@ f (s;V)5 f (s) all the way up to a
macroscopic sizeSM , above which aggregates cannot for
so thatf (s.SM ;V)5`].

There only remains to determine the values ofl i for f
.fc . For that we perform on Eqs.~26! the same splitting as
we did for f,

j i'E
s0

s1(V)

ds wi~s!exp$2 f ~s!2W~s!2ls%

1E
s1(V)

`

dswi~s!exp$2 f ~s;V!2W~s!2ls%, ~37!

with l5l(f;V). If V is sufficiently large, the second inte
gral is bounded above by

wi~s1!

s1
E

s1(V)

`

dssexp$2 f ~s;V!2W~s!2ls%.

If f.fc , as we have seen, this integral tends tof2fc
when V→`, but wi(s1)/s1→0 in the same limit, so the
contribution of the second integral of Eq.~37! above fc
vanishes in the thermodynamic limit. Thus, Eqs.~37! tend to
Eqs. ~26! with l50; there is no additional contribution t
the densitiesj i abovefc .

B. Behavior in the thermodynamic limit

The previous analysis can be summarized in a very sim
recipe: in the thermodynamic limit, all equations for the r
evant thermodynamic quantities derived at the beginning
this section, and which were valid forf,fc , are also valid
for f.fc by just settingl50. In particular, the free energ
~30! is given by

bF/V52rc2(
i 51

n

l i ,cj i1af, f>fc , ~38!
03140
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wherel i ,c are given by Eq.~26! with l50, andrc is given
by Eq. ~31! with l50 andl i5l i ,c .

As for the size distribution, we have shown that abovefc
macroscopic aggregates coexist with a distribution of mic
scopic aggregates. This distribution is given by Eq.~29! with
l50 andl i5l i ,c . It therefore decays slower than expone
tially, and this is an important prediction of our theory.

A final remark is appropriate, concerning the finite-si
analysis we have performed. For a system such as a po
medium it is possible that when the thermodynamic limit
taken s1(V) instead of diverging plateaus at some fin
value. For a porous medium, aggregates larger than the
size might be unable to form. Then there would be no ph
transition in the thermodynamic limit, although if the po
size is large, abrupt changes of thermodynamic behavior
still be found aroundfc .

IV. EXAMPLES

In this section, we will apply the general theory to speci
models. These examples will make contact with experim
and illustrate the behavior of models of the type conside
here. Within the theory of the preceding section a mode
specified by specifyingf (s), which is the sublinear part o
the internal free energy of an aggregate of sizes, and if there
are constraints, by specifying both the form of thewi and the
values ofj i . This determines the free energy and hence
phase behavior and the aggregate size distributionr(s).

A. Disclike micelles

As our first example we choose disclike aggregates,
two-dimensional aggregates. This is a simple example, th
are no constraints (n50). The size distribution of micelles in
a finite box exhibits a sharp cutoff: aggregation in micel
larger than a certain macroscopic sizeSM(V) are strongly
inhibited. So it is reasonable to modelf (s;V) in the simplest
possible way, i.e.,f (s<SM ;V)5 f (s), f (s.SM ;V)5` ~the
hard cutoff treated in Appendix B!. The discussion of this
approximation is postponed to the end of this section.
will take advantage of the simplicity of this model to pe
form numerical calculations at a number of finite syste
sizes. Thus, we will see the scaling ofl at and aroundfc for
large and increasingSM . The experimental system we hav
in mind is a solution of surfactant molecules that se
assemble to form disclike micelles~by disclike we mean tha
their thickness is that of a back-to-back layer of surfact
molecules but their size in the other two directions is limit
only by the system size!, for example the system of Re
@32#. Here, the sizes of an aggregate is proportional to it
surface area.

The free energy of a disc of surfactant molecules with
size s contains a linear term ins, as, proportional to the
number of surfactant molecules in the disc, plus a term fr
the edges. The edges have a different free energy den
from that at the center of a disc, well away from any ed
This different free energy density leads to a term prop
tional to the length of the edges, which is proportional to t
square root of the areas1/2. As f (s) does not include the
6-7
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extensive part it consists solely of thiss1/2 term f (s)
5eds1/2. A free energy of this form is widely used to stud
self-assembly into two-dimensional aggregates, see R
@21,5,23,33,24#. ed is a dimensionless proportionality con
stant that simply controls the value offc without affecting
the nature of the transition, providing thated.0—otherwise
there is no transition becausefc diverges; we seted55.
Less positive values ofed increase the transition density.
positive ed corresponds to the free energy density be
higher at the edges of a disclike micelle, i.e., edges are
favored.

So, for simplicity we sets051 anda50, and then we
have a model described by the free energy

bF/V5E
1

SM
dsr~s!@ ln r~s!211eds1/2#, ~39!

just a specific example of the general expression for the
energy~25!, but with a finite cutoff. By taking the variation
of this free energy with respect tor(s) and setting it equal to
the chemical potentialm we obtain an expression forr(s),

r~s!5exp~2eds1/21ms!, ~40!

just a specific example of the general expression forr(s)
~29!. Inserting this in Eq.~27! for f, with its upper limit of
integration set toSM , we solve the resulting nonlinear equ
tion for m. Then we have the chemical potential, the fr
energy, and the functionr(s) at that value off.

We perform calculations for large but finite values of t
maximum allowed aggregate sizeSM . Figure 1 shows the
chemical potential as a function of densityf for SM5102,
103, and 104. As SM is finite there is no phase transition o
course;m is a differentiable function off at all points. How-
ever, a sharp change in slope is obvious. This sharp chan
just the discontinuity found in thermodynamic limit rounde
off due to finite-size effects. In the thermodynamic lim
there is a phase transition atfc50.0051. Also note that a
the size of the largest aggregates is increasedm at and above
the transition tends towards 0. If we compare Eqs.~B2! and

FIG. 1. Chemical potentialm as a function of the densityf, for
the model of Eq.~39!. The dotted, dashed, and solid curves are
maximum aggregate sizesSM5102, 103, and 104, respectively. The
inset shows the region near the~rounded off! transition on a larger
scale.
03140
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~40! we see thatw(s);s1/2. From Eq.~B6! of the Appendix
B, we find that beyondfc and at largeSM , m;SM

21/2. We
observe this inverse square root dependence of the chem
potential in Fig. 1.

In Fig. 2 we have plotted the~unnormalized! density of
matter r(s)s as a function of the aggregate sizes above
~solid curve! and below~dashed curve! the transition density
of the infinite system. Clearly, above the transition a sign
cant fraction of the material is a part of aggregates with si
near the maximum allowed,SM . There is a range of size
1!s!SM in which the amount of matter is very small. Th
justifies the analysis performed in Appendix B. We also o
serve ~not shown! that r(s) for s of order unity ~i.e., the
distribution of small aggregates!, changes by barely percep
tible amounts beyond the transition, forSM51000 and
greater.

We have imposed a hard cutoff on the distribution of a
gregates: the free energy of an aggregate is lnr(s)211f(s),
right up to a maximum valueSM , and beyond that it is̀ .
This cutoff is not realistic: we assume that aggregates of
just less thanSM exist in large numbers and that their cent
of mass can explore the whole volume; both are requ
ments for the translational entropy of an aggregate to b
2 ln r(s). If the value ofSM is set by the size of the system
there may be few aggregates of sizes&SM and as their size
is a significant fraction of the system size their center
mass may be restricted to a volume significantly less than
volume of the system~think of a disc of side less than but o
the same order as the length of cubic box that encloses
system!. However, if we replace the hard cutoff atSM by a
softer cutoff, which would be some rapidly increasing fr
energy cost for aggregates with sizes greater than aro
SM , then for largeSM the soft and hard cutoffs lead to e
sentially indistinguishable results. In Fig. 1, we see that
results forSM5103 and 104 are close. A soft cutoff, which
started to reduce the density of aggregates at around 103 and
mader(s) effectively 0 by 104 would yield am as a function
of f that lay between theSM5103 and 104 curves in Fig. 1.
As SM→` the free energy for any reasonable cutoff affe
ing aggregates withs>SM tends towards the same therm
dynamic limit.

r FIG. 2. Amount of matter in aggregates of sizes, r(s)s, as a
function of s, for the model of Eq.~39!. The maximum aggregate
size issm5102. The dashed and solid curves are forf50.005 and
0.1, respectively.
6-8
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Returning to Fig. 1, we note that the slope ofm as a
function off is nonzero at the transition. We can obtain th
slope in our general model as~see Appendix A!

dm

df
52S df

dl D 21

5F E
s0

`

dsS s1
dl i

dl
wi~s! D 2

r~s!G21

,

~41!

taking the limit l→01. If any of the functions
f (s), wi(s), i 51, . . . ,n, diverges superlogarithmically with
s, then this integral will remain finite at the transition, and
dm/df.0. This is the case for disklike micelles, for whic
f (s);s1/2. However, if all those functions diverge logarith
mically, then the integral above may diverge, thendm/df
50 at the transition. In the simplest case~no constraints!
f (s)5t ln s, wheret.2 is required for there to be a trans
tion. Inserting thisf (s) in Eq. ~41! it is easily seen that if
t<3 the integral will diverge, and otherwise it will be finite
This result has been obtained in a number of earlier wo
e.g., Refs.@18#. As for ideal bosonst5d/211, dm/df50
at the transition ford53,4, anddm/df.0 at the transition
for d.4. So, qualitatively, disklike micelles behave as ide
bosons in more than four dimensions.

B. Microemulsions

A second example will illustrate the effect of constrain
in the model. A microemulsion is an isotropic equilibriu
phase composed of water, oil, and a surfactant@34,6#. If we
have that, say, there is much less oil than water then
microemulsion consists of droplets of oil, nanometers acr
coated with the surfactant and dispersed in the water. W
out the surfactant, at equilibrium we would have bulk oil a
water phases but as surfactant prefers to lie in the wate
interface it stabilizes the oil droplets dispersed in the wa
So, the system consists of droplets of one bulk phase
persed in another with a third component at the surface of
droplets. References@7,35# are recent experimental work o
the transition we study here.

The volume fraction of oil, proportional to the total vo
ume of the droplets, will be our concentrationf. Our size
variables is then proportional to the volume of a droplet. Th
surfactant can either lie on the surface of a droplet~the
amount on the surface scales as the surface areas2/3) or in
micelles. Micelles are small aggregates composed entirel
surfactant; as they contain no oil they do not contribute tof.
They do, however, contribute to the total amount of surf
tant, which we will constrain. For a droplet, there is a co
tribution to its free energy that is proportional to its volum
or equivalently to the amount of oil; as before we denote t
by as. The surface of the droplet will determinef (s), it gives
the sublinear contributions to the free energy of a drop
~5aggregate!. We need an explicit expression for the fre
energy contribution of the surfactant coated surface o
droplet. We do so by modeling the surface as an elastic sh
whose free energy is given by Helfrich’s expression@36#

f el5sA1
Kb

2 E dA~k11k222k0!21KsE dA k1k2 ,

~42!
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whereA is the total surface area of the sheet and the integ
tions are over this area.s is the surface free energy of
sheet with the spontaneous curvaturek0 ; k1 andk2 are the
local curvatures of the membrane;Kb and Ks are, respec-
tively, the bending and the saddle-splay moduli; andk0 is the
spontaneous curvature. These elastic moduli and the spo
neous curvature depend on variables such as the tempera

Depending on the values of the curvature moduliKb and
Ks the system can be found in different phases@34#. The two
most typical are the microemulsions considered here,
bicontinuous~spongelike! phases. For a boundaryless, o
entable surfaceS, the integral of the Gaussian curvatu
k1k2, is

E
S
dAk1k254p~12g!, ~43!

whereg is the genus of the surface~in short, the number of
‘‘holes’’ !. If Ks.0 the last term in Eq.~42! lowers the free
energy by increasingg, thus giving rise to bicontinuous
phases. However, ifKs,0 the free energy is minimized fo
g50. Negative values ofKs then favor the formation of
microemulsion phases. In addition, large negative values
Ks inhibit shape fluctuations and increase size fluctuati
@37#. It is in this regime that modeling microemulsion dro
lets as spheres makes sense.

For a spherical droplet of size~volume! s, the Gaussian
curvature term of Eq.~42! is trivially obtained from Eq.~43!
with g50. On the surface of the sphere the local curvatu
k15k251/R, whereR is the radius of the sphere, related
s by s5(4/3)pR3. Thus, Eq.~42! becomes

f el~s!5~36p!1/3ss2/318pKb@12~s/s0!1/3#214pKs,
~44!

where s054p/(3k0
3). So, we have zeroth,s1/3 and s2/3

terms, hence we writef (s) as @38#

f ~s!5a02a1s1/31a2s2/3, ~45!

where onlya1.0 has a well-defined sign.
The free energy of Eq.~25! is an integral over the contri

butions of aggregates, here droplets, with all values os,
from the minimum values0 upwards. We also have micelle
that contribute to the free energy but haves50. So we must
add a term to the free energy from the micelles. Treat
these micelles as an ideal gas then, if their density isr0, the
required term isr0@ ln r0211f0#, where f 0 is the internal
free energy of a micelle. Thus, Eq.~25! becomes

bF/V5r0@ ln r0211 f 0#1E
s0

`

dsr~s!

3@ ln r~s!211 f ~s!1as#, ~46!

with f (s) given by Eq. ~45!. Equation ~27! for f is un-
changed. We constrain the total amount of surfactant to bj,
so
6-9
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j5c0r01c1E
s0

`

dss2/3r~s!, ~47!

with c0 andc1 appropriate geometric factors. Equation~47!
is slightly modified with respect to Eq.~26!, by the addition
of the contribution to the total amount of surfactant from t
micelles. This gives rise to the size distribution

r~s!5exp$2a01a1s1/32~a21l2c1!s2/32ls%, ~48!

where as beforea has been absorbed into the Lagrange m
tiplier l. Also we obtain the equilibriumr0

r05e2 f 02c0l2. ~49!

Whena21l2c1.0, then we have a finitefc at which a
transition occurs. This is just as discussed in the preced
section. At fc a macroscopic droplet form, and a macr
scopic droplet is nothing other than a bulk oil phase. A b
phase coexisting with the microemulsion has formed. T
phenomenon is known asemulsification failure@7#. To illus-
trate emulsification failure we take some simple and rat
arbitrary values for the parameters of the free energy.
make the simple choicea5a05a25 f 050, a15c05c1
51 and fix the smallest droplet sizes051. With this choice,
f andj are related tol andl2 by

f5E
1

`

dssexp$s1/32l2s2/32ls%, ~50!

j5e2l21E
1

`

dss2/3exp$s1/32l2s2/32ls%. ~51!

The transition line is determined by settingl50. In that
case, bothf(l2) andj(l2) can be explicitly found in terms
of error functions. The solution is plotted in Fig. 3. Als
shown in the same figure are a few lines of constantl2
~equivalently, constantr0), easily obtained by numerical in

FIG. 3. Phase diagram of the microemulsion model:f is the
amount of oil enclosed in droplets of surfactant, andj the total
amount of surfactant. In the shaded region there appears a m
scopic phase of oil~emulsification failure!, due to the lack of sur-
factant. It occurs through a phase transition, signaled by the s
line ~corresponding tol50). The dashed lines represent the curv
j(f) at constantl2 (521,0,1,2 from bottom to top!, or equiva-
lently, at constantr05e2l2, the excess of surfactant.
03140
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tegration of Eqs.~50! and ~51! at different values ofl. No-
tice thatr0 increases when we move upward or leftward
the phase diagram. This means that either increasingj ~the
amount of surfactant! or decreasingf ~the amount of fluid in
the droplets! yields an excess of surfactant that does not fo
droplets. On the other hand, moving in the opposite direct
we find thel50 line in which there is not enough surfacta
to accommodate the droplet distribution and that produce
transition in which a bulk oil phase forms.

According to Eq.~46! and the expressions for the inte
vening functions and variables, the free energy per unit v
ume for this model is given by

bF/V5H 2e2l22r2l2j2lf if f,fc ,

2e2l2,c2rc2l2,cj if f>fc ,
~52!

wherer is the integral ofr(s) and the subscriptc denotes
the corresponding quantities atl50. This free energy is
plotted in Fig. 4 as a function off for several values ofj. As
discussed in Sec. III, forf>fc we havel50 when an
infinite aggregate forms~in this case, when there is a bul
phase of the emulsion!; therefore,l2 is just a function ofj,
and so isrc . Thus, for fixedj the free energy is simply a
constant.

Returning to our general free energy of a microemulsi
we consider the case where micelles do not form. If
surfactant were unable to form micelles, thenf andj would
be given by

f5E
s0

`

dssr~s!5s0
2E

1

`

dttr~s0t !,

j5E
s0

`

dss2/3r~s!5s0
5/3E

1

`

dtt2/3r~s0t !.

But t2/3<t for any t>1, soj<s0
21/3f, which means that for

a givenf there is a maximum amount of surfactant the s
tem can accommodate. Smaller droplets at the same vol
fraction have a larger surface area than larger droplets b

ro-

lid
s

FIG. 4. Reduced free energy per unit volumeC[bF/V as a
function of the amount of oil in the microemulsionf for different
values of the amount of surfactantj (50.5, 1.0, 1.5, 2.0, 2.5, and
3.0, from top to bottom!. The dashed line marks the transitio
Beyond that point, the free energy remains a constant.
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there is a minimum droplet size then there is a maxim
total area of the droplets and hence a maximum amoun
surfactant that can be accommodated. This means tha
largej, smallf part of the phase diagram of Fig. 3 is ina
cessible. A single microemulsion phase is not possible
yond a certain maximum concentration of surfactant.

C. Ring polymers revisited

Ring polymers are the bridge between BEC and the m
roscopic aggregation of self-assembling models. On one
ring polymers are ‘‘paths in imaginary time’’ of the boson
and on the other side they are aggregates of monomers
this reason they have served us as the first instance o
general model introduced in Sec. III and so we have alre
determined that they undergo a transition completely an
gous to BEC. This is not a novel observation, it is of cou
implicit in the exact mapping between the two systems a
was already studied, in the context of polymer aggregatio
a lattice model, by Petscheket al. @4#. So, there only remains
to relate the transition to experiment and previous theory

There are solutions of surfactant molecules in which
molecules aggregate into wormlike micelles: micelles t
are roughly cylindrical with a radius limited to the length
one surfactant molecule, but whose lengths can be arbitra
large @22,40#. These wormlike micelles form chains as we
as rings, the competition between the two being determi
by the free energy cost of forming ends and that of bend
a micelle around to form a ring; see Refs.@22,41#. The pres-
ence of chains destroys the phase transition, although if t
are many rings present then there are traces of the trans
in the behavior@42,43#.

V. CONCLUSIONS

There is a class of systems in which aggregates of
sizes can reversibly self-assemble, and in which, without
teraggregate interactions, there is a phase transition.
phase transition occurs when an infinite aggregate or ag
gates form. It is analogous to the BEC of ideal bosons
neither case are there interactions, and the macroscopic
gregates we find play the same role as the condensate
macroscopic number of bosons. This analogy for the spe
case when the aggregates are ring polymers is implied
Feynman’s path integral approach for bosons@3,30,4#. We
have shown that the analogy applies to a whole class
self-assembling systems with partition functions that
qualitatively similar, although of a different functional form
to that of ideal bosons or ring polymers. This class is defin
by the requirement that the internal free energy of an ag
gate contains a linear termas plus others that are sublinea
and ensure that the density is finite when the chemical
tential m→a2. This requirement is also satisfied by an e
tremely diverse set of objects that are not surfactant ag
gates, such as defects in superfluid helium@9,10#, baby
universes@17,18#, and percolating clusters@13,14#. It is re-
markable that our analogy implies an analogy between
statistics of some surfactant phases and the statistics o
called baby universes studied in work on quantum grav
We gave three examples: ideal disclike micelles, microem
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sions, and ring polymers. We suggest that the formation
the lamellar phase@32# and emulsification failure@7# found
in experiments on systems with surfactant are related to
transition we have described, although modified by the pr
ence of interactions between the aggregates.

Finally, we consider interaggregate interactions. In g
eral, we expect the contribution of interactions to the fr
energy to be some functionalFex of the size distribution
function of aggregates. Then the free energy of Eq.~25! be-
comes

bF/V5E
s0

`

dsr~s!@ ln r~s!211 f ~s!1as#1Fex@r~s!#.

~53!

Minimizing and imposing the constraints Eq.~26!, we obtain

r~s!5expH 2 f ~s!2(
i 51

n

l iwi~s!1~m2a!s2
dFex

dr~s!J .

~54!

If dFex/dr(s);bs for s→`, and if whenm5a1b the in-
tegral forf, Eq.~27! converges to a finite valuefc , then we
expect the conclusions of Sec. III to follow. The analysis
the presence of interaction is complicated by the fact t
r(s) depends on a functional of itself. In the ideal case
presence of the transition relies on eitherf (s) or a constraint
ensuring thatfc is finite. With interactions a transition is
present even iff (s)50 and there are no constraints, pr
vided that the functional derivative in Eq.~54! makesr(s)
decay sufficiently fast as to renderfc finite.

This effect was seen in Ref.@24# for surfactant aggrega
tion into rodlike micelles. There is no transition if the syste
is ideal, becausef (s)5const, but a simple excluded-volum
interaction suffices to induce the transition by this mec
nism. Also, Zhanget al. @44# report simulation results and
theoretical calculations for a model of interacting aggrega
The simulations show the appearance of two aggregates
much smaller than the size of the system simulated. T
calculations using an approximate excess free energyFex
also determinedfc . The simulations were inconclusive du
to finite-size effects, and the calculations did not extend
yond fc . Very recently, Blaak and Cuesta@45# have per-
formed an analysis of this system following the scheme s
gested by Eq.~54! to account for the excluded volum
interactions. They have also carried out new simulations t
ing into account the existence of a macroscopically la
aggregate. The agreement between theory and simulatio
impressive.

We also note that a variation of the model of Zhanget al.
has been studied by Blaak@46#. In his model,s is propor-
tional to the surface rather than the volume. Therefore,
free energy contains a superlinears3/2 term. Within the
analysis of Sec. III, this does not result in a phase transit
Again, this is consistent with Blaak’s results that show
sign of the appearance of large aggregates.
6-11
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APPENDIX A: MONOTONICITY OF f„l…

f is a function ofl not only explicitly, but also through
thel i because of the constraints, Eq.~26!. When there are no
constraints,

f8~l!52E
s0

`

dss2r~s!,0, ~A1!

and thenf is obviously monotonically decreasing withl.
However, if there are constraints the proof is not so simp
Let us introduce the notation

^X~s!&5E
s0

`

dsX~s!r~s!. ~A2!

Then we can expressf5^s&, and j i5^wi(s)&. If we now
differentiatef with respect tol,

f8~l!52^s2&2(
i 51

n

^swi~s!&l i8~l!, ~A3!

and we determine the derivativesl i8 by differentiating the
constraints,

05^swi~s!&1(
j 51

n

^wi~s!wj~s!&l j8 . ~A4!

If we multiply this equation byl i8 and sum ini we obtain

05(
i 51

n

^swi~s!&l i81 (
i , j 51

n

^wi~s!wj~s!&l i8l j8 . ~A5!

Substracting Eq.~A3! from Eq. ~A5! we get

2f8~l!5K S s1(
i 51

n

l i8wi~s!D 2L .0, ~A6!

and sof8(l),0, which completes the proof.
s
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APPENDIX B: FINITE-SIZE DEPENDENCE OF l

Here, we consider the case in whichf (s,SM ;V)5 f (s)
and f (s.SM ;V)5`, SM(V)(→` asV→`) being the size
of the largest aggregate a box of volumeV can accommo-
date. Our aim is to determine the scaling ofl with SM . The
second integral of Eq.~36! can be written as

f l5E
s1

SM
dsse2ls2w(s), ~B1!

wherew(s) denotes the sum of the sublinear terms,

w~s!5 f ~s!1(
i 51

n

l iwi~s!. ~B2!

Let us change the variable tot5(2l)(SM2s), and define
TM5(2l)(SM2s1); then

f l5
e2lSM

~2l!
E

0

TM
dt~SM1l21t !e2t2c(t), ~B3!

with c(t)5w(SM1l21t). From this expression it follows
that lSM→` as SM→`, for if lSM5O(1), then f l

;SM
2 exp$2w(SM)%→0 asSM→` @recall condition~34! for

the convergence of Eq.~27! for l50#. Therefore, forSM
sufficiently large we can harmlessly replaceTM by infinity.
To carry on the calculations a little farther, notice that t
relevant contribution ofc(t) to the integral comes from the
small values oft, so we can just Taylor expand aboutt50,

c~ t !5w~SM !1l21w8~SM !t1•••, ~B4!

to find

f l;exp@2lSM2w~SM !#/~2l!E
0

`

dt~SM1l21t !

3exp$2t@11l21w8~SM !#%

5exp@2lSM2w~SM !#
SM

@2l2w8~SM !#2

3@12l2w8~SM !#. ~B5!

From this we finally obtain the asymptotic behavior

l;2SM
21$w~SM !1 ln@f l~2w~SM !/SM !8#1•••%

~B6!

asSM→`.
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