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Ideal bosons and a classical system of monomers that aggregate forming noninteracting ring polymers are
known to have the same partition function. So, the ring polymers have a phase transition, the analogue of
Bose-Einstein condensation of bosons. At this phase transition macroscopic polymers are formed. The link
between these systems is made via Feynman'’s path integrals: these integrals are the same for the trajectories of
the bosons in imaginary time and for the configurations of the polymers. We show that a transition of this
general form occurs within a whole class of aggregating systems. Examples are the lamellae formation in
suspensions of disclike micelles or the emulsification failure observed in water-oil-surfactant emulsions. As
with bosons, the transition occurs even when aggregates do not interadt:tidmsition in“He is believed to
be Bose-Einstein condensation modified by interatomic interactions. We suggest that interaggregate interac-
tions too only modify the transition we have found.
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[. INTRODUCTION ticles are not immutable objects but are formed reversibly
[5,6]. Typically, we have a solution of surfactant with possi-
Bose-Einstein condensatidBEC) is a textbooK 1,2], but  bly a cosurfactant or oil. The surfactant molecules then spon-
rather unusual, phase transition. It occurs for noninteractinganeously assemble into micelles, or coat and stabilize drop-
bosons, in contrast to more conventional transitions such dsts of oil. Both the micelles and the droplets are what we
that of the Ising model, which are driven by interactions.term aggregates. For example, in a microemulsion, equilib-
Feynmar{3] showed that the statistical mechanics of bosondium is obtained when the oil is dispersed as a polydisperse
can be performed via what he called path integrals. Thesfistribution of oil droplets whose surfaces are cpated vy|th
integrals are, in turn, equivalent to integrals over the configuSurfactant. These droplets are more stable than just a single

rations of ring polymers. Thus, the path integral formalism ofoUlk Oil phase because with a single bulk phase there is no
Feynman implies that noninteracting bosons and selféxtensive oil-water interface, and the amphiphilic surfactant

assembling, noninteracting ring polymers have partitionmg{i?(;’rlleth;\ée Itehtg I:ﬁ’; iSteznv?/ir?hy;etr:QiltS 'gtnedrf?ecr?]' -Ie:?aetudrles-
functions of exactly the same form. Necessarily then, ring . rop 9 y perature,
as varying either one changes the balance of the equilibrium

polymers must undergo a phase_ tran;ition precisely anaIQlzietween droplets of different sizes. A BEC-like transition
gous to BEC4]. Here, we generalize this result to show thatoccurs when the balance is shifted such that at equilibrium,

there is a class of self-assembling systems that undergo &,me of the oil exists as an infinite droplet, a bulk phase.
phase transition analogous to BEC. This phase transition OBrhis transition is called emulsification failufa].

curs in the absence of interactions between the aggregates predictions are for very simple models of what are
formed by self-assembly. At BEC a condensate appears thgjite complex experimental systems: they contain water, one
is a macroscopic number of bosons in a single state. In thgy more surfactantéwhich are rather complex molecujes
analogous transition in self-assembling systems, an aggreil, possibly even a cosurfactant as well. However, if the
gate of macroscopic size appears. This may be, for examplaggregates formed have free energies #eatlein certain

an infinite bilayer of surfactant or a bulk phase. The aggreways (see Sec. Il then our prediction of a phase transition
gates that coexist with the macroscopic aggregate have bothill be correct. In Sec. 1V, we study three examples: disclike
a constant number density and a size distribution which demicelles, microemulsions, and wormlike micelles. It should
cays more slowly than exponentially with their size. For ex-be borne in mind that wormlike micelles only undergo a
ample, within our simple model for a microemulsion, at co-BEC-like phase transition in the limit that their end cap en-
existence with a bulk oil phase, the number density ofergy is infinite. Of course in experiment the energy will not

droplets of sizes decays as exp(s?9). be infinite and so the transition will be rounded off by the
Self-assembling systems are systems in which the pagpresence of chains. The other two systems do have phase
transitions.
In this contribution we consider models of surfactant so-
*Email address: cuesta@math.uc3m.es lutions, which have a BEC-like transition. Remarkably, a be-
"Email address: r.sear@surrey.ac.uk wildering range of physical systems also have partition func-
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tions that are closely related to that of ideal bosons or ringhat favors the formation of many aggregates to maximize
polymers. The ordered phase of systems which are in ththis translational entropy; see Ref§,21-24 for examples
universality class of th&XY model[8] in three dimensions, of the use of free energies of this type. We will define what is
supports defect loops. This universality class is a class ofequired of the internal part of the free energy in order to
Systems that, when they order, break @_lsymmetry[B], observe a BEC-like phase transition, and show, in Sec. IV, a
examples are superflutHe[9,10], and a phase transition in few examples of aggregating systems exhibiting this kind of
the early universd9—11. The defect loopgcalled vortex ~ transition. The last section is a conclusion. _
loops in “He) are defects in the ordering that are rings in the Our results for our general modébec. Il) and for mi-
sense that the defect is one dimensional and it is closed—rgfoemulsiongSec. IV B have been published previously in
ends. If interactions between these defect loops are né shorter form{25].
glected, we have simply our system of noninteracting ring
polymers. Within this picture the transition from the ordered Il. BOSE-EINSTEIN CONDENSATION
phase to the disordered phase occurs when an infinite defect
loop (in BEC language a condensat®rms. Defect loops
have also been studied in a nematic phm’ and their Let us summarize br|Eﬂy the way BEC is derived in text-
behavior is similar even though the symmetry of the nematid®00ks, for exampld1,2]. This will enable us to establish
phase is different to that of an order¥ model. So, thex'Y both the required notation and to describe the essentials of
model in three dimensions and the nematic phase both hayge transition that lies at the heart of this paper, in order to
defects that can be describédithin an approximationas ~ Stress the main points involved. Let us suppose we have a
ideal ring polymers and therefore within this approximation,System of idealspinles$ bosons distributed among an infi-
have a partition function of the same form as ideal bosons iffite, discrete set of energy levels. The grand canonical en-
three dimensions. semble partition functior®, of bosons at a chemical poten-
Percolation can be regarded as an aggregation phenorial 4, and a temperaturg, is
enon in which clusters of links or nodésalled “animals”)
are formed. When looked at from this point of view, the INE=-2 In(1—ze A, (1)
percolation transition is of the BEC tygé&3], with the per- €

A. The standard approach

colating cluster playing the role of the condens@® a mat- ] o ] ]
ter of fact, the percolation transition on the Bethe lattice isvhere z= ef# is the activity, with B=1kT (k is Boltz-
the same as that of ideal bosons in three dimendib4B. mann’s constant From Eq.(1) it follows that 0<z<ef<,

A surprising connection appears in some kinds of randorvhereeo is the ground-state energy, and thaBlnliverges as
networks[15,16. These are systems out of equilibrium, but Z @PProaches the upper bound. _ _ .
the analogy with BEC appears when studying the asymptotic Our system is now assumed to be&-aimensional cubic
distribution of links among nodes as time goes to infinity20x of (hypedvolumeV=L¢, with no external potential. By
(long time plays the role of the thermodynamic limit in theselintroducing pe.I’IOd.IC boundary conditions, the set of possible
system Under certain conditions one node takes a finite€Nergy levels is given by
fraction of all the links, thus forming the analog to the con-
densatd 15].

A final example is of models of the statistics of so-called
baby universe$17,18, which arise in the study of quantum
gravity. with A=h/y27mkT the thermal wavelength, and so the

As well as their use in modeling a diverse range of pheground-state energyg,=0. WhenL>A we can transform
nomena, free energies of the type we study in Sec. Ill aréghe sum(1) into an integral and this yields
some of the simplest free energies to exhibit a phase transi-
tion. As such they have been employed as simple models in 1 VvV
the study of the dynamics of phase transitiph8,20. They InE=— T (d2) FJ
are what Godrehe and LucK20] call the monkey class of
urn 'models, as it porresponds to the image of a monkeExpanding in powers of it follows
playing at exchanging balls between boxes.

This paper is organized as follows. We start, in the fol- v %
lowing section Sec. Il, by studying BEC and ring polymers. INE=-—Gun+1(2), Gu(2)= >
First in Sec. Il A, we present the basics of BEC in order to n=1
establish both the nature of the transition and some of the o .
functions and notation that we will require later on. Then in | N€ @verage density is then given by
Secs. IIB and Il C, we describe Feynman’s path integral ap-
proach and show that the partition function is identical in nziG (2) (5)
form to that of a model of ring polymers. In Sec. Ill, we will q 3dil 2)-
consider the free energy function for noninteracting aggre-
gates. It has two parts: an internal free energy of an aggre- If d>2, then both Eqgs(4) and (5) are convergent for
gate as a function of its size and a translational entropy term=1 (= ef), while the original expression for &, Eq. (1)

2
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diverged at this point. The reason for this is that the counting R

of levels for a given energy yielding thé’?~! factor in the ZN:j (ANxo({xi}; i}

integral (3), gives zero weight to the ground state, which is v

the cause of the divergence. We can get rid of this problem 1 N

by separating out its contribution to B i.e., by adding =Nr PE};[N VNdeiﬂl p1(Xi; PX;). 9

—In(1-2) to the expression for |&, Eq. (4). Correspond-

ingly, this adds the contributioll ~*2/(1-2) to the expres-  permytations can be split into cyclgz6]; therefore, the in-
sion forn, Eq. (5), and we can realize that, givéhlarge but tegral above factorizes into terms of the form
finite, by choosingz sufficiently close to 1, the new contri-
bution ton can be made arbitrarily large. The number of . . .
bosons in the ground state is then macroscopic, forming the hn:J LA™ 1(X1;X2) p1(X2iX3) - - p1(XniX1).  (10)
so-calledcondensateln the V—o limit there is a phase v
transition, BEC. Ifn<n.=A"%Gg)(1), then InZ is given  f there areC, cycles of lengthn in a given permutation
by Eq. (4) with the solution forz of Eq. (5) (the density in
the ground state is)Qwhereas iln>n., then InZ is a con- N c
stant, INE=VA Gy, (1), andn—n, is the density of deNXH p1(xi;Px)=11 ho.
bosons in the ground state. Ve et n=1

We stress three points: first, the transition occurs when, o ol i ; ;
increasingz, the density of bosons in excited states E). 1??8 ag;'?:gs(lgﬁéncé‘tm [%] pﬁ(rar:(l:gatlons inTy that spiit
saturates; second, that at the transition a condensate appears " '

that is a macroscopic population of bosons in a single state, hCn
and third, that in order to calculate the behavior at and be- Zy= n__ (11)
yond the transition, we needed to consider explicitly finite £4iCh=N n=1 C,Incn

system sizes.
As usual, we can get rid of the combinatoric constraints by

B. Feynman’s path integral approach using the grand partition function

Feynman introduced an alternative approach to this prob- * (h,Z"/n)Cn

lem [3] using the density matrix in the space representation. 2=, Nzy= n—l (12

This involves mapping bosons onto ring polymers, and pro- N=0 =1 c=o Cal

vides the link between low-temperature bosons and the cIaT- hich btai

sical systems we are interested in. We therefore sketch h Lom which we obtain

derivation; for more details see R¢8]. For a set ofN par- w

ticles, the partition function is given by In= = E
n=1

h,z" 13
. (13
Zy=trp, p=e Py (6)

There only remains the calculation bf,. For that it is
with Hy the Hamilt9nian operator.AFor noninte[acting distin- helpful to rewrite Eq(10) ash,=tr p, which according to
guishable particlepp({X};{X{})=p1(X1;X1) - - - p1(Xn;Xy)  the definition(6), is nothing butZ, computed at a tempera-
({x;} denotes the set of coordinats;, ... xy}). In theV  ture given byB’ =ng (equivalently,A’>=nA?). If we—as
—oo limit p, is a Gaussian Feynman [3]—use Eq. (7) for p;, we obtain h,

=(VIA%Nn~ 9, Inserting this into Eq(13), we recover Eq.
. ’ 1 T L (4); again we have not taken the condensate into account.
pr(Xx") = el P(X_X )% () The neglect lies in that Eq7) for p, is obtainedafter taking
the thermodynamic limit. In order to overcome this defi-
Quantum particles are indistinguishable, so in the case dfien_cy, we are going to det.ermirm} fqr a d-dimensiona!
bosons, the trace in E@6) has to be takemnly over sym- C.UbIC box 'of side Ieng_trL with perlod|c boundary condi-
metric states. A symmetric density matixcan be obtained t|ons._|1r}2th|s box, _the elgenf_unctlon?j of the Laplace operator
e . areV™ ““exp{—2min-x/L}, with ne Z° Then
from that of distinguishable particlgs, as
d

A 1 T

~ 1 ~ )y — G !

p({xi};{xi’}):m PgﬁN po({x 1 {Px/1), (8) p1(X;X") Viﬂl EIS L imx0|, (14
Iy being the set of permutations bf elements, andPx;} where93(q, ¢) is one of Jacobi’s theta functions, defined as
denoting the result of performing the permutatidron the [27]
set{Xy, ... Xn}- o
. Thus, the partition function for a system Nfnoninteract- 94(q,0)=1+ 22 qk2 cos Xe.
ing bosons takes the form k=1
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Equation(14) coincides with Eq(7) in the L— < limit. With
this expression fop;, we obtain

hy=[95(b"0)]%, b=e "7, (15
therefore,
INE=2 —[95(b"0]% (16)
n=1 N

The expansion(16) distinguishes two regimes: the

“large” n and the “small’n terms. Suppose>L?/A?, then

PHYSICAL REVIEW 65 031406
where the factor ¥ comes in because there arevays in

which a ring can be split to form a chain, and the angled
brackets indicate an average oW({x;}). Now,

3 nd/2 3
dxy- - -dx,exp — —
277a2> fv” ' " p{ 2a?

x> (Xi—l_xi)z_i(xl_xn)z}v (20)
.2 2

V< 5()(0_ Xn)> =

an equation that reproduces EJ.0) upon identifying A2
=2ma’/3. Hence

b"<1 andd¥4(b",0)~1; these terms approach those of the

expansion of—In(1—2). Suppose now that<L?/A?, then

b"~1. If we make use of the propertgonsequence of the

Poisson summation formu[28])

193(9_”)\,0) — )\_1/2193(9_ 77/)\,0)’

Zring:(Ad)nl 1
n Ad I,]d/2+1'

(21)

For a system o monomers that can self-assemble to form
noninteracting ring polymers of arbitrary length, the contri-
bution to the grand potential of rings of lengthis z"Z;".

then 93(b",0)~(L/A)n" Y2 Hence these terms approach The activity of a ring of lengtim is z" at equilibrium because
those of Eq.4). If zis sufficiently smaller than 1, then the its chemical potential must be times that of a monomer

former are negligible and g is again given by Eq(4).
However, ag gets close enough to 1, the langéerms grow

[22,21,9. Therefore, the grand canonical partition function,
E, of self-assembling ring polymers, is just Ed.3) with

so as to add a macroscopic contribution approximately giveih,/n replaced byZﬂ”g, ie.,
by —In(1—-2). We thus reproduce BEC exactly as discussed

in the preceding section, all in the single formyiz).

C. The classical isomorphism

The appearance of cyclic paths in the partition function of2nd the density of monomers will be

bosons, as a consequence of their being indistinguishable,
establishes a connection between this system and a model of
ring polymers, usually referred to in the literature as the

“classical isomorphism29,30. In the so-called Gaussian
model of polymerg2] the probability density for two neigh-

, \%
INE=2 2'Z=—Gups1(zAY), (22
n=1 A
® ring
n
Nmor= 24, NZ'—7= =5 GanlZA"). (23

AS Nyo=Z,np(N), with p(n) the density of ring polymers

boring monomers in a-dimensional polymer chain to be of lengthn, then

separated by a distancds given by

o _( 3 )d’z 3r2
(= 2ma? & 2a2|’

17

(24)

Equations(22) and (23) reproduce Eqs4) and(5) with the

wherea is a length scale usually known as the persistencérenormalized” fugacityz=zA“. This is the isomorphism.

length. For a chain oh+1 monomers the probability that

they are at positiongg, X;, ... ,X,, IS

1 3 2
P({Xi}):ZEXF{_E; (Xil_xi)z]a (18

the normalizing constari,,=V(2m7a%/3)"%? being the par-

Once again, we have derived an equation that is only
valid up to the transition. The corresponding equation for the
density of monomers Ed23) saturates. But the mapping of
ring polymers onto bosons is exact so for noninteracting self-
assembling ring polymers with periodic boundary conditions
on the monomer density, we obtain Ef4) for the probabil-
ity that the two ends are at positiorsaandx’. Using this we

obtain Eq.(16), but withz replacingz, and theA appropriate

tition function of the chain. The factdv arises because the to ring polymers not bosons.

first monomer can be placed anywhere in the volume

Due to this exact isomorphism between ideal bosons and

From this expression we can obtain the partition functionggt assembling ring polymers, they have partition functions

of a ring polymer(a chain whose ends are joined togejtodr
n monomers, as

209~ 2,80t ) 19

with identical forms and therefore the two, at first sight very
different systems, behave completely analogously. The first
consequence of this is that the behavior of bosons can be
interpreted in terms of a classical system of ring polymers
(interactions can also be accounted for by introducing path

031406-4
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integrals[3,30]). This has been widely exploited in studies of where theé; play the role of “generalized densities.” An
bosons; see the review of Ceperl80]. The second conse- example of a constraint would be a fixed total surface area of
guence is the complete analogy between the equilibrium bethe aggregates. This would apply to a situation where the
havior of self-assembling ring polymers and that of bosonssurface of the aggregates are coated with a layer of, say, a
Ring polymers undergo a “Bose-Einstein condensation”surfactant: for all the surfactant to lie at the surface of the
transition. From the analysis of BEC carried out in Sec. Il B,aggregates the total area of the aggregates must equal the
we can conclude that the Bose condensate is equivalent mumber of surfactant molecules times the surface area of a
the formation of macroscopically long ring polymé#. So,  single molecule.
if the concentration of monomers is larger than a critical Depending on the actual shapefg¢t) and the “weights”
value[given by Eq.(5) with z=1], there appear macroscopi- w;(s), this model may have very different phase behaviors.
cally long rings. Note that a transition is enforced by the factThe one we are interested {related to BEQ requires that
that the serie&y5(z) with d>2 takes only values in some all these functions behave a$s) ass—c (the reason will
limited range [0,2.617 for d=3) for z<1 and is divergent be made clear below
for z>1. The equilibrium distribution of aggregate sizes for this
model can be found as the minimum of Eg5) at constant

IIl. GENERAL MODEL amount of “matter”

We have considered monomers that self-assemble into ¢:jwds (s) @27
ring polymers. Let us generalize this and consider monomers s $s),
that can self-assemble into aggregates, where these aggre-
gates are noninteracting but are otherwise arbitrary. This iander the constraint6), i.e.,
motivated by the following observation. What happens if we
replace the free energy of a ring-polymer or boson density B
matrix by some other free energy that has the property that in %
Eq. (23) for the monomer densityG45(z) is replaced by a
different sumG(2)? If, aszruns over a range€z<z, this  yjg produces
new sum takes only values in the limited range G(z)
=<G(z;) and is divergent foz>z., then there must be a v
phase transition, and this phase transition must occur due to In p(S)+f(S)+2 \iw;(s)+(a—u)s=0. (28
the appearance of a macroscopic aggregate. =1
To be as general as possible we will denote the size of

cach agoregete by aimensinlessizes wrich e alow (. = 1€ I POSIAT KT ks covsepencn,
to have any valug,<s<. If the number density of aggre- ' ! grang P

gates of sizesis denoted by(s), then the free energy of our corresponding to the constrain@6) (and which are analo-

svstem will be given by the expression gous to chemical potentials associated to the “densitigls”
y 9 y P For notational simplicity, let us introduck=a— u. Then

" Eqg. (28) gives an expression for the density distribution of
ﬂF/V=f dsp(s)[Inp(s)—1+f(s)+as], (25  aggregates

So

:0,

BF <
74”21 Néi—po

wheref(s) +asis the internal free energyn units ofkT) of p(s) =exp{ - f(S)—;1 Aiwi(s)— sy, (29

an aggregate of size The rest of the contribution of aggre-

gates of sizes to the free energy, Ip(s)—1, is simply the  cf Eq. (24), the equation for the density of ring polymers
ideal mixing free energy. We use an integral not a sum in Eqgerived from the isomorphism with bosons. Hence the equi-

(25), partly for simplicity and partly as integrals are most jihrium free energy(25) becomes
commonly used to study self-assembling systems. If the spe-

cific model requires aggregates to be distinguished by an v
integer indexas in the preceding sectiprall the integrals of BFIV= —p—z Ni&+(a—\N) o, (30
this section should be replaced by sums. As we will discuss =1
later, the conclusions are unaffected by this distinction. Ring\'/vith defined as
polymers are a specific case of the general free en&2gy, p
The free energy of a gas of ring polymers where the density "
of polymers of lengths is p(s) is given by Eq.(25) with p:f dsp(s). (31
f(s)+as=—In[Z"YV]. So

For generality, let us also allow the system to have im-

posed constraints To illustrate all this consider again the case of ring poly-

mers. For this model there are no constraints imposed, and as
. we have already mentioned,(s)+as= —In[Z"9(s)/V];
gizf dsw(s)p(s), i=1,...r, (26) hence the equilibrium size distributiori29) is p(s)

So =z°Z"Ys)/V, as in Eqg. (24). Therefore, ¢

031406-5
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=A"9Gy,(zAY), thus recovering the expression for the den-

sity of monomers obtained befo(&3).

Because of the behavior df(s) and w;(s) ass—o it
follows that the convergence of the integrals¢$) is domi-
nated by the chemical potential, i.e.,

S as s,

p(s)~e (32
Therefore, as long as>0, Eq.(26) permit us to eliminate
the \; as functions of the constraing and of . Equation
(27) then yields¢ as a function ofz, and given that is a
monotonically decreasing function af (see Appendix A it
can be inverted to yield as a function of¢.

Obviously ¢—0 asA—o0, and\>0 is required to guar-
antee convergence of the integrals in E(&6) and (27).
Thus, \ is restricted to the range (0). Two different pos-
sibilities arise in the limitn— 07 : either ¢ remains finite or
¢— . We defineg, as the limit value ofg, i.e.,

b= fwdsseXp{—f(S)—Zl Aiwi(s) | (33

If ¢.= then the equatiop= ¢(\) can be inverted for any

finite value of ¢, and there is a well-defined aggregate dis-

tribution (29) and therefore a well-defined free ener@p),
for all values of¢. However, if ¢,<oo then we can invert
the equation only in the finite range< ¢.. Now, ¢.< so
long as

lim s2 exp{ —f(s)—Z1 Niwi(s) { =0, (34)

S—

as then the integral fog., Eq. (33) converges.

The convergence of the integral far, leads to a transi-
tion analogous to BEC. Note that the condition for conver
gence of the integrdB4) is also the condition for a sum over
the integrand of Eq(33) to converge. So, the change from

PHYSICAL REVIEW B5 031406

with s. This analysis amounts to considering a free energy of
an aggregate of sizg In p(s)—1+1(s;V), which depends on
V. Obviouslyf(s;V)—f(s) asV—<, but the convergence is
not uniform. Intuitively, ifsis “small” compared toV, then
f(s;V)=~f(s), but if sis “large,” then f(s;V) strongly dif-
fers fromf(s). Thus, there is a typical sizg (V) such that it
is the largest for whicti(s<s;;V)=~f(s). The convergence
of f(s;V) to f(s) whenV—oo occurs essentially because
s1(V)— in this limit. We expect that in a finite volume
aggregates that span this volume will have their free energy
increased by their confinement in it.

Now, for a finite system, the equation

b= fwdssexp[—f(s;V)—W(s)—)\s} (35
So

must necessarily be solvable farfor any value ofé. (For
notational simplicity we have introduced/(s)==;\;w;.)
This can only happen in two ways, given the assumptions we
made forf(s): either(a) the above integral diverges when
N—0%, or (b) f(s;V) increases superlinearly witg i.e.,
s f(s;V)—» ass—. In case(@ we have the same situ-
ation as we met before for ring polymeifgor which
f(s;V)~ In(V9 ass—<], and \ is how constrained to re-
main strictly positive. In caséb) the integral(35) converges
for any A e R becausef(s;V) dominates the largs decay.
Also, the value of the integral increases arbitrarily as
N— —o. This case is met, for instance, in a system of com-
pact aggregates, for which there is an upper bound to the size
an aggregate can have in order to fit in the Hox this
examplef (s;V) would diverge whers approached the maxi-
mum possible size an aggregate can reggh

It is important to notice that, for any gives#p and any
finite V, Eq. (35 with the corresponding constraintgqgs.
(26) with f(s;V) instead off(s)] can only have a single
solution A (¢;V). This is obvious because the integral is a
monotonically decreasing function of. What we need to

the sums in the preceding section to the integrals here doglétermine now is the limit ok (4;V) whenV— e, which

not affect the phase behavior.
As mentioned in the Introduction there has been a gre

we will denote\* (). With this aim we can make use of the

dponuniform convergence df(s;V) to f(s) and split the in-

deal of work on models that have free energies which can b&9ral (35 as

written in the form of Eq.(25) [12,13,15-2Q However, in
all this work, the equivalent to the function we céfls) has
always been a logarithmic function &f i.e., f(s)=7In(s),

wherer is some constant. As we will see in Sec. IV, surfac-

tant systems havé(s) functions that do not vary as Ig)(
and so our results will be a little different form those in
previous work. Ideal bosons id dimensions are described
by a logarithmicf (s) with 7=d/2+ 1. We can see this from
Eq. (4) where the weight of states occupied hybosons
varies as1” (92*1) This weight is essentially the exponential
of minus ourf(s) function.

A. Finite-size analysis

s1(V)
¢%f dssexp{—f(s) —W(s)—\s}
So

g
s1(V)

Let us also denot&(¢), for any ¢=< ¢, the solution forn
to Egs.(26) and(27) with p(s) given by Eq.(29).

Assume ¢p< ¢, and takeV sufficiently large[such that
N(#)s;(V)>1]. Then, forh=\(¢), the first integral of Eq.
(36) is approximatelyp whereas the second one is approxi-
mately 0. This means that(¢;V)—\(¢) as V—o, so

A (P)=N(¢).

dssexp{ —f(s;V)—W(s)—\s}. (36)

Analogously to the case of bosons, we have to do a finite- Assume nowg> ¢, . In this case\* (¢) cannot be posi-
size analysis in order to study the macroscopic aggregate, thize, because th& — o limits of the first and second inte-

condensed phase. See RE31] for a detailed finite-size
analysis of a system with af{(s) that varies logarithmically

grals of Eq.(36) are <¢. and 0, respectively, fox>0; so
the right-hand side of Eq.36) would be <¢.. Therefore,
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N*(¢)=<0. We have to discuss both casés,and(b), sepa- where\; . are given by Eq(26) with A\=0, andp, is given
rately. In casda), A\* (¢) cannot be negative either, becauseby Eq.(31) with A=0 and\;=\; ..
then the first integral of Eq.36) (and maybe the second one  As for the size distribution, we have shown that abgye
as wel) would diverge; hencer* (¢)=0. In case(b) the = macroscopic aggregates coexist with a distribution of micro-
monotonicity of the integral35) forces\(¢,V)<0, if ¢  scopic aggregates. This distribution is given by £9) with
> ¢.; as we have shown that the limNt* (¢)=0, for these A=0 and\;j=X\; .. It therefore decays slower than exponen-
two things to hold simultaneously the only possibility is thattially, and this is an important prediction of our theory.
N (¢)=0. A final remark is appropriate, concerning the finite-size
We have thus proven that foW¥—o, if ¢<¢., N\ analysis we have performed. For a system such as a porous
(>0) is given by the solution of Eq(27), whereas if¢ medium it is possible that when the thermodynamic limit is
> ¢, \=0. There is then a phase transitiondt ¢.. In  taken s;(V) instead of diverging plateaus at some finite
order to understand what the nature of this transition is let ugalue. For a porous medium, aggregates larger than the pore
take a closer look at Eq36). If ¢> ¢, then\=0; but for  size might be unable to form. Then there would be no phase
A=0, the first integral of this equation approaches,  transition in the thermodynamic limit, although if the pore
therefore, the limit of the second one wher-~ must be Ssize is large, abrupt changes of thermodynamic behavior will
¢ — ¢ . But this latter integral only contains contributions of still be found aroundp.. .
macroscopic aggregatéwith size s>s;(V)], so above the
transition, the excess of maésith respect top.) goes into
macroscopic aggregatéas we have seen in the preceding
section for the particular case of ring polymers In this section, we will apply the general theory to specific
In Appendix B, we have worked out in more detail the models. These examples will make contact with experiment
finite-size analysis of the simple case in which there is a hardnd illustrate the behavior of models of the type considered
cutoff to the distributior f(s;V)=f(s) all the way up to a here. Within the theory of the preceding section a model is
macroscopic siz&,, , above which aggregates cannot form, specified by specifyind(s), which is the sublinear part of
so thatf(s>S,; ;V) =]. the internal free energy of an aggregate of Sizand if there
There only remains to determine the values\gffor ¢  are constraints, by specifying both the form of tiieand the
> ¢.. For that we perform on Eq§26) the same splitting as values of&; . This determines the free energy and hence the

IV. EXAMPLES

we did for ¢, phase behavior and the aggregate size distribyt{@).
s1(V)
§i~f ds w(s)exp[— f(s)—W(s)—\s} A. Disclike micelles
S,
’ As our first example we choose disclike aggregates, i.e.,
* e _ two-dimensional aggregates. This is a simple example, there
* Ll(v)dsvw(s)exp{ f(s;V)—W(s)=As}, (37) are no constraintsy=0). The size distribution of micelles in

a finite box exhibits a sharp cutoff: aggregation in micelles
with A=\(¢;V). If V is sufficiently large, the second inte- larger than a certain macroscopic si2g(V) are strongly

gral is bounded above by inhibited. So it is reasonable to modék;V) in the simplest
(50 possible way, i.ef(s<S;V)=1(s), f(s>Sy;V)=x (the
WilSy) [~ e B hard cutoff treated in Appendix)BThe discussion of this
Sy Ll(v)dssexp{ f(s:V) = W(s) = rs}. approximation is postponed to the end of this section. We

will take advantage of the simplicity of this model to per-
If ¢>¢., as we have seen, this integral tendsd¢te- ¢,  form numerical calculations at a number of finite system
when V—oo, but w;(s;)/s;—0 in the same limit, so the sizes. Thus, we will see the scalingofat and aroundb,. for
contribution of the second integral of E¢37) above ¢,  large and increasing,, . The experimental system we have
vanishes in the thermodynamic limit. Thus, E¢¥/) tend to  in mind is a solution of surfactant molecules that self-
Egs. (26) with A=0; there is no additional contribution to assemble to form disclike micell¢by disclike we mean that

the densities; aboved. . their thickness is that of a back-to-back layer of surfactant
molecules but their size in the other two directions is limited
B. Behavior in the thermodynamic limit only by the system size for example the system of Ref.

. . i i . [32]. Here, the sizes of an aggregate is proportional to its
The previous analysis can be summarized in a very simple ,face area.

recipe: in the thermodynamic limit, all equations for the rel-  The free energy of a disc of surfactant molecules with a
ev_ant thgrmodynam_lc quantltles_ derived at the beglnnl_ng Ofize s contains a linear term irs, as, proportional to the
this section, and which were valid fef< ¢, are also valid mper of surfactant molecules in the disc, plus a term from
for ¢> ¢ by just settings =0. In particular, the free energy he edges. The edges have a different free energy density
(30) is given by from that at the center of a disc, well away from any edge.
v This different free energy density leads to a term propor-
— tional to the length of the edges, which is proportional to the
BEIV="p izl Nobitad,  ¢=de, 39 square root of gtjhe arest’. ,gs f(s) does I[r)1ot|oinclude the
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FIG. 1. Chemical potentigk as a function of the density, for ] ]
the model of Eq(39). The dotted, dashed, and solid curves are for ~ FIG. 2. Amount of matter in aggregates of sizep(s)s, as a
maximum aggregate SiZ&A:J.OZ, 103’ and 16, respective|y_ The function of S, for the model of Eq(39) The maximum aggregate

inset shows the region near theunded off transition on a larger ~ Size iSSy=_10". The dashed and solid curves are fr0.005 and
scale. 0.1, respectively.

12 ;
. . _ " (40) we see thatp(s)~sY% From Eq.(B6) of the Appendix
extensive part it consists solely of this'? term f(s) B, we find that beyonds, and at largeSy, , MNSl\_Alg- We

_ 1/2 H H H
=€ys". A free energy of this form is widely used to study gpserve this inverse square root dependence of the chemical
self-assembly into two-dimensional aggregates, see Re Potential in Fig. 1.

[21,5,23,33,24 €4 is a dimensionless proportionality con- = |, Fig. 2 we have plotted théunnormalizedl density of
stant that simply contr_o_ls the va}lu_e @f, without affecti_ng matter p(s)s as a function of the aggregate sigeabove

the nature of the transition, providing thef>0—otherwise  (solid curve and below(dashed curvethe transition density
there is no transition becausg; diverges; we seey=5.  of the infinite system. Clearly, above the transition a signifi-
Less positive values ofy increase the transition density. A cant fraction of the material is a part of aggregates with sizes
positive e4 corresponds to the free energy density beingnear the maximum allowedsy, . There is a range of sizes
higher at the edges of a disclike micelle, i.e., edges are diSI<S<SM in which the amount of matter is very small. This

favored. justifies the analysis performed in Appendix B. We also ob-
So, for simplicity we ses,=1 anda=0, and then we serve (not shown that p(s) for s of order unity (i.e., the
have a model described by the free energy distribution of small aggregateschanges by barely percep-

S tible amounts beyond the transition, f&,,=1000 and
,3F/V=J dsp(s)[In p(s)— 1+eys*?], (390  greater.
1 We have imposed a hard cutoff on the distribution of ag-
gregates: the free energy of an aggregate gdn-1+1(9),
just a specific example of the general expression for the frefight up to a maximum valu&,,, and beyond that it is-.
energy(25), but with a finite cutoff. By taking the variation This cutoff is not realistic: we assume that aggregates of size
of this free energy with respect p(s) and setting it equal to  just less thars,, exist in large numbers and that their center

the chemical potentigk we obtain an expression fei(s), of mass can explore the whole volume; both are require-
/2 ments for the translational entropy of an aggregate to be 1
p(s)=exp(—egs'*+ us), (400 —Inp(s). If the value ofSy, is set by the size of the system

there may be few aggregates of s&eS,, and as their size

just a specific example of the general expressiongi®) is a significant fraction of the system size their center of
(29). Inserting this in Eq(27) for ¢, with its upper limit of  mass may be restricted to a volume significantly less than the
integration set t&5,,, we solve the resulting nonlinear equa- volume of the systentthink of a disc of side less than but of
tion for u. Then we have the chemical potential, the freethe same order as the length of cubic box that encloses the
energy, and the functiop(s) at that value ofe. system. However, if we replace the hard cutoff 8 by a

We perform calculations for large but finite values of the softer cutoff, which would be some rapidly increasing free
maximum allowed aggregate sif,. Figure 1 shows the energy cost for aggregates with sizes greater than around
chemical potential as a function of densityfor Sy, =107, Su , then for largeS,, the soft and hard cutoffs lead to es-
10%, and 10. As S, is finite there is no phase transition of sentially indistinguishable results. In Fig. 1, we see that the
course;u is a differentiable function o at all points. How-  results forSy,,=10° and 1¢ are close. A soft cutoff, which
ever, a sharp change in slope is obvious. This sharp changessarted to reduce the density of aggregates at arouhdrid
just the discontinuity found in thermodynamic limit rounded madep(s) effectively 0 by 16 would yield au as a function
off due to finite-size effects. In the thermodynamic limit of ¢ that lay between th&,,=10° and 10 curves in Fig. 1.
there is a phase transition &t =0.0051. Also note that as As S,,—x the free energy for any reasonable cutoff affect-
the size of the largest aggregates is increased and above ing aggregates witls=S,, tends towards the same thermo-
the transition tends towards 0. If we compare E&2) and  dynamic limit.
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-1

d\, 2
s+ ﬁWa(S)) p(s)

Returning to Fig. 1, we note that the slope @fas a whereA is the total surface area of the sheet and the integra-
function of ¢ is nonzero at the transition. We can obtain thistions are over this arear is the surface free energy of a
slope in our general model @see Appendix A sheet with the spontaneous curvatutg «; andk, are the
_ local curvatures of the membrank; and K are, respec-
dp ( d_¢>) _ f " de tively, the bending and the saddle-splay moduli; agds the
do¢ d\ 0 spontaneous curvature. These elastic moduli and the sponta-
(41)  neous curvature depend on variables such as the temperature.
. o N ) Depending on the values of the curvature modgjiand
taking the limit A—0". If any of the functions  ihe system can be found in different phak@$. The two
f(s), wi(s),i=1,... v, diverges superlogarithmically with ¢ typical are the microemulsions considered here, and
s, then this mtggr_al will remain fln!te at the_transmon, anc_i SOpjicontinuous(spongelikg phases. For a boundaryless, ori-
du/d¢>0. This is the case for disklike micelles, for which gniaple surfaces, the integral of the Gaussian curvature
f(s)~s'? However, if all those functions diverge logarith- K Ko IS
mically, then the integral above may diverge, thea/d¢ e
=0 at the transition. In the simplest cag® constraints
f(s)=7Ins, wherer>2 is required for there to be a transi- f dAkk,=4m(1—Q), (43
tion. Inserting thisf(s) in Eq. (41) it is easily seen that if 2
7<3 the integral will diverge, and otherwise it will be finite. ) )
This result has been obtained in a number of earlier worksvhereg is the genus of the surfa¢e short, the number of
e.g., Refs[18]. As for ideal bosons=d/2+1, du/dp=0 “holes™). If _KS>0 t_he last term in Eq(_42) Iowe_rs th_e free
at the transition fod=3,4, anddu/d$>0 at the transition €nergy by increasingy, thus giving rise to bicontinuous
for d>4. So, qualitatively, disklike micelles behave as idealPhases. However, iK;<0 the free energy is minimized for

microemulsion phases. In addition, large negative values of
B. Microemulsions K inhibit shape fluctuations and increase size fluctuations

o . [37]. Itis in this regime that modeling microemulsion drop-
A second example will illustrate the effect of constraints gig g5 spheres makes sense.
in the model. A microemulsion is an isotropic equilibrium g5, 5 spherical droplet of sizeolume s, the Gaussian
phase composed of water, oil, and a surfacl@At6]. If we ., ature term of Eq42) is trivially obtained from Eq(43)

have that, say, there is much less oil than water then @i, g—0. On the surface of the sphere the local curvatures
microemulsion consists of droplets of oil, nanometers across, — .. —1/R, whereR is the radius of the sphere, related to

coated with the surfactarjt_ apd dispersed in the Water.' Withg by s=(4/3)7R3. Thus, Eq.(42) becomes

out the surfactant, at equilibrium we would have bulk oil and

water phases but as surfactant prefers to lie in the water-olil _ 13 213 1/372

interfage it stabilizes the oil dropﬁets dispersed in the water. fe(s) = (36m) Fos™H 8K [ 1= (S/70) ] +47TKS(’44)
So, the system consists of droplets of one bulk phase dis-

persed in another with a third component at the surface of th
droplets. Referencdd,35] are recent experimental work on
the transition we study here.

The volume fraction of oil, proportional to the total vol-
ume of the droplets, will be our concentratigh Our size
variablesis then proportional to the volume of a droplet. The , )
surfactant can either lie on the surface of a droftbe where onlya; >0 has a well-defined sign. _
amount on the surface scales as the surface gaor in The free energy of E¢25) is an integral over the contri-
micelles. Micelles are small aggregates composed entirely giutions of aggregates, here droplets, with all valuess,of
surfactant; as they contain no oil they do not contributepto  1oM the minimum values, upwards. We also have micelles

They do, however, contribute to the total amount of surfacinat contribute to the free energy but hare0. So we must

tant, which we will constrain. For a droplet, there is a con-2dd @ térm to the free energy from the micelles. Treating
tribution to its free energy that is proportional to its volume these micelles as an ideal gas then, if their densifyishe

or equivalently to the amount of oil; as before we denote thig€auired term ispe[In po—1+fo], wheref, is the internal

by as. The surface of the droplet will determiri¢s), it gives "€ energy of a micelle. Thus, E(5) becomes

the sublinear contributions to the free energy of a droplet

(=aggregate We need an explicit expression for the free _ B *

energy contribution of the surfactant coated surface of a BFIV=polIn po 1+f°]+LOdSp(S)

droplet. We do so by modeling the surface as an elastic sheet,

whose free energy is given by Helfrich’s expressjas] X[Inp(s)—1+f(s)+as], (46)

Where oo=47/(3x3). So, we have zeroths'® and s%3

terms, hence we writé(s) as[38]

f(s)=ay—a;s"3+a,s?°, (45)

_ Ky 5 with f(s) given by Eq.(45). Equation(27) for ¢ is un-
fo= oA+ 7f dA(Ky T 12— 2K0) +st dAKirz, changed. We constrain the total amount of surfactant t, be
(42 so

031406-9



JOSEA. CUESTA AND RICHARD P. SEAR PHYSICAL REVIEW E55 031406

20 SR e 2
E10. 7 T
.22 emulsification failure
, &
0 5 10 15 20
0
FIG. 3. Phase diagram of the microemulsion modglis the FIG. 4. Reduced free energy per unit volunie=8F/V as a

amount of oil enclosed in droplets of surfactant, @dhe total ~ function of the amount of oil in the microemulsiah for different
amount of surfactant. In the shaded region there appears a macrgalues of the amount of surfactaat(=0.5, 1.0, 1.5, 2.0, 2.5, and
scopic phase of oilemulsification failurg due to the lack of sur- 3.0, from top to bottorn The dashed line marks the transition.
factant. It occurs through a phase transition, signaled by the soli@eyond that point, the free energy remains a constant.
line (corresponding ta. =0). The dashed lines represent the curves
£(¢) at constant, (=-1,0,1,2 from bottom to top or equiva-  tegration of Eqs(50) and (51) at different values ok. No-
lently, at constanp,=e "2, the excess of surfactant. tice thatp, increases when we move upward or leftward in
the phase diagram. This means that either increasittge
B °° a3 amount of surfactanhbr decreasing) (the amount of fluid in
§=CopotC1 L dss%(s), (47)  the dropletsyields an excess of surfactant that does not form
0 droplets. On the other hand, moving in the opposite direction
W|th CO and Cl appropriate geometric factors_ Equa“@'?) we f|nd the)\=0 Iine in Wh|Ch tl'.]er(.-:' iS .not enough SurfaCtant
is slightly modified with respect to E426), by the addition 0 accommodate the droplet distribution and that produces a
of the contribution to the total amount of surfactant from thetransition in which a bulk oil phase forms.

micelles. This gives rise to the size distribution According to Eq.(46) and the expressions for the inter-
vening functions and variables, the free energy per unit vol-

p(S)=exp—ag+ ;53— (a,+ \oCp)s?3—\sl, (49) ume for this model is given by

where as befora has been absorbed into the Lagrange mul- ) —e M—p—NyE—\N¢p if p<dop, 52
ipli i ilibri FIV={ . 5
tiplier \. Also we obtain the equilibriunp, B —e Moo po—Npgk i H=dbe,

po=e 002, (49

wherep is the integral ofp(s) and the subscript denotes
the corresponding quantities at=0. This free energy is
Blotted in Fig. 4 as a function ap for several values of. As

discussed in Sec. lll, foxp=¢, we haver=0 when an

Whena,+\,c,>0, then we have a finitéb, at which a
transition occurs. This is just as discussed in the precedin
section. At ¢. a macroscopic droplet form, and a macro-

scopic droplet is nothing other than a bulk oil phase. A bulkinfinite aggregate formgin this case, when there is a bulk

phase coexist_ing with the mic_r_oer‘.nulsio.n has for”.‘ed- This[c)hase of the emulsiontherefore\, is just a function of¢,
phenomenon is known aamulsification failurg 7]. To illus- and so isp, . Thus, for fixed the free energy is simply a

trate emulsification failure we take some simple and rathef:onstant.

arbitrary Va“.JeS for th? parameters of the free energy. We Returning to our general free energy of a microemulsion
make the simple choic@=a,=a,=fo=0, @1=Co=C1 o consider the case where micelles do not form. If the

=1 and fix the smallest droplet sizg= 1. With this choice, :
& and¢ are related to\ and, by E:rfgaisginntb\;vere unable to form micelles, theérand £ would

— wd 1/3_)\ 2/3_)\ ’ 50 o0 o0
¢ fl ssexp(s 28 s} 0 ¢=f dsso(s):sgf dttp(sot),
o 1

§=e*‘2+f dsPexp(s®—\,s7%—\s}.  (51) % B
1 A ’ } &= L dssz’3p(s)=sg’3‘fl dtt?3p(sot).
0

The transition line is determined by setting=0. In that

case, bothp(\,) and&(\,) can be explicitly found in terms  But t?°<t for anyt=1, sogssgmqs, which means that for

of error functions. The solution is plotted in Fig. 3. Also a given¢ there is a maximum amount of surfactant the sys-
shown in the same figure are a few lines of constant tem can accommodate. Smaller droplets at the same volume
(equivalently, constant,), easily obtained by numerical in- fraction have a larger surface area than larger droplets but if
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there is a minimum droplet size then there is a maximunsions, and ring polymers. We suggest that the formation of
total area of the droplets and hence a maximum amount dahe lamellar phasg32] and emulsification failur¢7] found
surfactant that can be accommodated. This means that tlie experiments on systems with surfactant are related to the
large &, small ¢ part of the phase diagram of Fig. 3 is inac- transition we have described, although modified by the pres-
cessible. A single microemulsion phase is not possible beence of interactions between the aggregates.

yond a certain maximum concentration of surfactant. Finally, we consider interaggregate interactions. In gen-
eral, we expect the contribution of interactions to the free
C. Ring polymers revisited energy to be some function&l., of the size distribution

Ring polymers are the bridge between BEC and the macf-unCtIon of aggregates. Then the free energy of @4 be-

4 ; X -“comes
roscopic aggregation of self-assembling models. On one side

ring polymers are “paths in imaginary time” of the bosons,

and on the other side they are aggregates of monomers. For *

this reason they have served us as the first instance of theSF/V= L dsp(s)[Inp(s)—1+f(s)+as]+Felp(s)].
general model introduced in Sec. Il and so we have already 0 (53)
determined that they undergo a transition completely analo-

gous to BEC. This is not a novel observation, it is of course

implicit in the exact mapping between the two systems andinimizing and imposing the constraints E6), we obtain

was already studied, in the context of polymer aggregation in

a lattice model, by Petschek al.[4]. So, there only remains Y F
to relate the transition to experiment and previous theory. s)=exp —f(s)— Wi (S)+ (w—a)s— ex
There are solutions of surfactant molecules in which the p(s) ® .21 Wi(s)+(p—a) op(s) |’

molecules aggregate into wormlike micelles: micelles that (59
are roughly cylindrical with a radius limited to the length of

one surfactant molecule, but whose lengths can be arbitraril : _ .
large [22,40. These wormlike micelles form chains as well ﬁgﬁiﬁg fg(sé; ?zsgogoijeo:g;easng) I;\lf\il:i(tagl\fza_ltz+ bﬂggi U\‘/e

Els r;]ng?, the competition fbfetwgen thedtwo gelr?g detsrméneaexpect the,con.clusions of Sec. Il to follow. Tﬁé analysis in

ay,;ici||;e§rce,8ﬁ(rjg¥0cfgf:noa r?rzrg;”;?a: r%esﬂgazndfﬂt %t,]gfprgg_ n he presence of interaction is complicated by the fact that
ence of chains destroys the phase transition, although if thel‘é(s) depends on a functional of itself. In the ideal case the

are many rings present then there are traces of the transitid}{ €S€NCe of the t.ran_smon rell|es_ on elthi.(as) ora cons_t.ramF
in the behaviof42,43. ensuring thate,. is finite. With interactions a transition is

present even iff(s)=0 and there are no constraints, pro-
vided that the functional derivative in E¢G4) makesp(s)
decay sufficiently fast as to rendey, finite.

There is a class of systems in which aggregates of all This effect was seen in Reff24] for surfactant aggrega-
sizes can reversibly self-assemble, and in which, without intion into rodlike micelles. There is no transition if the system
teraggregate interactions, there is a phase transition. This ideal, becausé(s) = const, but a simple excluded-volume
phase transition occurs when an infinite aggregate or aggréateraction suffices to induce the transition by this mecha-
gates form. It is analogous to the BEC of ideal bosons: imism. Also, Zhanget al. [44] report simulation results and
neither case are there interactions, and the macroscopic atfieoretical calculations for a model of interacting aggregates.
gregates we find play the same role as the condensate ofTdne simulations show the appearance of two aggregates not
macroscopic number of bosons. This analogy for the specificuch smaller than the size of the system simulated. The
case when the aggregates are ring polymers is implied bgalculations using an approximate excess free enérgy
Feynman’s path integral approach for bos$¢8s30,4. We  also determinedb.. The simulations were inconclusive due
have shown that the analogy applies to a whole class dp finite-size effects, and the calculations did not extend be-
self-assembling systems with partition functions that areyond ¢.. Very recently, Blaak and Cuesf{d5] have per-
qualitatively similar, although of a different functional form, formed an analysis of this system following the scheme sug-
to that of ideal bosons or ring polymers. This class is definedjested by Eq.(54) to account for the excluded volume
by the requirement that the internal free energy of an aggrenteractions. They have also carried out new simulations tak-
gate contains a linear teras plus others that are sublinear ing into account the existence of a macroscopically large
and ensure that the density is finite when the chemical poaggregate. The agreement between theory and simulations is
tential u—a ™. This requirement is also satisfied by an ex-impressive.
tremely diverse set of objects that are not surfactant aggre- We also note that a variation of the model of Zhatal.
gates, such as defects in superfluid heliigy10], baby has been studied by BladK6]. In his model,s is propor-
universeq 17,18, and percolating clustefd3,14. It is re-  tional to the surface rather than the volume. Therefore, the
markable that our analogy implies an analogy between thé&ee energy contains a superlineat? term. Within the
statistics of some surfactant phases and the statistics of sanalysis of Sec. lll, this does not result in a phase transition.
called baby universes studied in work on quantum gravityAgain, this is consistent with Blaak’s results that show no
We gave three examples: ideal disclike micelles, microemulsign of the appearance of large aggregates.

V. CONCLUSIONS
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APPENDIX A: MONOTONICITY OF ¢ (X\) where ¢(s) denotes the sum of the sublinear terms,
¢ is a function of\ not only explicitly, but also through Y
the\; because of the constraints, E86). When there are no p(s)="f(s)+ Z:l \iw;i(s). (B2

constraints,
¢'(N)=— desszp(s)<0, (A1)

and theng is obviously monotonically decreasing with

Let us change the variable te=(—\)(Sy—Ss), and define
Tu=(—\)(Su—sy); then

e "o f T 1y a—t—ult)
dt(Sy+\ " )e ¥,
(_)\) 0 ( M )

b= (B3)

However, if there are constraints the proof is not so simple.

Let us introduce the notation
x(o)= | dsxsn(s) (A2)
0

Then we can expres$=(s), and &=(w;(s)). If we now
differentiate¢ with respect tax,

¢>'<x)=—<s2>—_21<svvi<s>>x{<x), (A3)

and we determine the derivativas by differentiating the
constraints,

0=(sW($)+ 2, (Wi(SIWi(S)N] . (Ad)
If we multiply this equation by\{ and sum ini we obtain

0=2, (sW(SH+ 2 (W(SW(SHNN]. (AS)

Substracting Eq(A3) from Eq. (A5) we get

v 2
er_Zl A wi(s) >>o, (AB)

—¢'<x>=<

and so¢’ (N\) <0, which completes the proof.

with ¢(t)=@(Sy+\~t). From this expression it follows
that ASy—> as Sy—x, for if N\Sy=0(1), then ¢,
~S2, exp{— ¢(Sy)}1—0 asSy— = [recall condition(34) for
the convergence of Eq27) for A=0]. Therefore, forS,,
sufficiently large we can harmlessly repla€g by infinity.
To carry on the calculations a little farther, notice that the
relevant contribution of4(t) to the integral comes from the
small values of, so we can just Taylor expand abdut 0,

() =¢(Sy)+N "o (St+- -, (B4
to find
¢|~exr[—xSM—<p(SM)]/<—x)f:duswwlt)
xexp{—t[1+X 1o (S}
exf —\Sy—¢(Sw)] Su
=exd — — s —
W N =o' (sw)T?
X[1=A—¢'(Sw)]. (B5)

From this we finally obtain the asymptotic behavior

A~ —SuHe(Sw)+IN[é(— @(Sw)/Sw) 1+ -}
(B6)

as Sy — .
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